当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Conductive and Catalytic Triple‐Phase Interfaces Enabling Uniform Nucleation in High‐Rate Lithium–Sulfur Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2018-10-30 , DOI: 10.1002/aenm.201802768 Hong Yuan 1 , Hong-Jie Peng 1 , Bo-Quan Li 1 , Jin Xie 1 , Long Kong 1 , Meng Zhao 1 , Xiao Chen 1 , Jia-Qi Huang 2 , Qiang Zhang 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2018-10-30 , DOI: 10.1002/aenm.201802768 Hong Yuan 1 , Hong-Jie Peng 1 , Bo-Quan Li 1 , Jin Xie 1 , Long Kong 1 , Meng Zhao 1 , Xiao Chen 1 , Jia-Qi Huang 2 , Qiang Zhang 1
Affiliation
Rechargeable lithium–sulfur batteries have attracted tremendous scientific attention owing to their superior energy density. However, the sulfur electrochemistry involves multielectron redox reactions and complicated phase transformations, while the final morphology of solid‐phase Li2S precipitates largely dominate the battery's performance. Herein, a triple‐phase interface among electrolyte/CoSe2/G is proposed to afford strong chemisorption, high electrical conductivity, and superb electrocatalysis of polysulfide redox reactions in a working lithium–sulfur battery. The triple‐phase interface effectively enhances the kinetic behaviors of soluble lithium polysulfides and regulates the uniform nucleation and controllable growth of solid Li2S precipitates at large current density. Therefore, the cell with the CoSe2/G functional separator delivers an ultrahigh rate cycle at 6.0 C with an initial capacity of 916 mAh g−1 and a capacity retention of 459 mAh g−1 after 500 cycles, and a stable operation of high sulfur loading electrode (2.69–4.35 mg cm−2). This work opens up a new insight into the energy chemistry at interfaces to rationally regulate the electrochemical redox reactions, and also inspires the exploration of related energy storage and conversion systems based on multielectron redox reactions.
中文翻译:
导电和催化三相界面可实现高速率锂硫电池的均匀成核
可充电锂硫电池由于其卓越的能量密度而引起了极大的科学关注。但是,硫电化学涉及多电子氧化还原反应和复杂的相变,而固相Li 2 S沉淀的最终形态在很大程度上决定了电池的性能。在此,提出了一种电解质/ CoSe 2 / G之间的三相界面,以便在工作的锂硫电池中提供强的化学吸附性,高电导率和出色的多硫化物氧化还原反应的电催化作用。三相界面有效地增强了可溶性多硫化锂的动力学行为,并调节了固态Li 2的均匀成核和可控生长S在大电流密度下析出。因此,具有CoSe 2 / G功能隔离器的电池在6.0 C时可提供超高倍率循环,初始容量为916 mAh g -1,经过500次循环后的容量保持为459 mAh g -1,并能稳定运行硫负载电极(2.69–4.35 mg cm -2)。这项工作为合理地调节电化学氧化还原反应的界面上的能量化学开辟了新见解,也激发了基于多电子氧化还原反应的相关能量存储和转化系统的探索。
更新日期:2018-10-30
中文翻译:
导电和催化三相界面可实现高速率锂硫电池的均匀成核
可充电锂硫电池由于其卓越的能量密度而引起了极大的科学关注。但是,硫电化学涉及多电子氧化还原反应和复杂的相变,而固相Li 2 S沉淀的最终形态在很大程度上决定了电池的性能。在此,提出了一种电解质/ CoSe 2 / G之间的三相界面,以便在工作的锂硫电池中提供强的化学吸附性,高电导率和出色的多硫化物氧化还原反应的电催化作用。三相界面有效地增强了可溶性多硫化锂的动力学行为,并调节了固态Li 2的均匀成核和可控生长S在大电流密度下析出。因此,具有CoSe 2 / G功能隔离器的电池在6.0 C时可提供超高倍率循环,初始容量为916 mAh g -1,经过500次循环后的容量保持为459 mAh g -1,并能稳定运行硫负载电极(2.69–4.35 mg cm -2)。这项工作为合理地调节电化学氧化还原反应的界面上的能量化学开辟了新见解,也激发了基于多电子氧化还原反应的相关能量存储和转化系统的探索。