当前位置:
X-MOL 学术
›
ChemSusChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molten‐Salt‐Assisted Synthesis of Hierarchical Porous MnO@Biocarbon Composites as Promising Electrode Materials for Supercapacitors and Lithium‐Ion Batteries
ChemSusChem ( IF 7.5 ) Pub Date : 2018-12-04 , DOI: 10.1002/cssc.201802245 Hai Zhang 1 , Ze Zhang 1 , Ji‐Di Luo 1 , Xing‐Tao Qi 1 , Ji Yu 1 , Jian‐Xin Cai 2 , Zhen‐Yu Yang 1
ChemSusChem ( IF 7.5 ) Pub Date : 2018-12-04 , DOI: 10.1002/cssc.201802245 Hai Zhang 1 , Ze Zhang 1 , Ji‐Di Luo 1 , Xing‐Tao Qi 1 , Ji Yu 1 , Jian‐Xin Cai 2 , Zhen‐Yu Yang 1
Affiliation
Biomass‐derived carbon composites (e.g., metal oxide/biocarbon) have been used as promising electrode materials for energy storage devices owing to their natural abundance and simple preparation process. However, low loading content/inhomogeneous distribution of metal oxides and inefficient cracking of biocarbon (BC) are intractable obstacles that impede the efficient utilization of biomass. In this work, hierarchical porous MnO/BC composites were prepared by a facile molten‐salt‐assisted strategy based on the superior salt‐water absorption ability of agaric. The addition of NaCl induces a liquid reaction medium by formation of a molten salt mixture at high temperature to effectively realize the activation and cracking of the bulk carbon, and it also acts as a recyclable sacrificial template to form mesopores and macropores in the as‐prepared hierarchical porous MnO/BC composites. The highly porous and uniform BC framework effectively enhances ion diffusion and electron‐transfer ability, serves as a protective layer to prevent fracturing and agglomeration of MnO, and thus enables superior rate performance and cycling stability of the MnO/BC composite for both supercapacitor electrodes (94 % capacity retention at 20 mA cm−2 after 5000 cycles) and lithium‐ion battery anodes (783 mA h g−1 after 1000 cycles). Notably, considering the simple and low‐cost preparation process, this work opens a promising avenue for the large‐scale production of advanced metal oxide/BC hybrid electrode materials for electrochemical energy storage.
中文翻译:
熔融盐辅助合成多层多孔MnO @生物碳复合材料作为超级电容器和锂离子电池的有希望的电极材料
生物质衍生的碳复合材料(例如,金属氧化物/生物碳)由于其自然丰度和简单的制备过程而被用作有前途的储能设备电极材料。但是,低含量的负载/金属氧化物的不均匀分布以及生物碳(BC)的低效裂解是妨碍有效利用生物质的棘手障碍。在这项工作中,基于琼脂的优异的盐吸水能力,通过一种简便的熔融盐辅助策略制备了多层多孔MnO / BC复合材料。NaCl的添加通过在高温下形成熔融盐混合物来诱导液体反应介质,从而有效地实现大体积碳的活化和裂化,它也可以作为可回收的牺牲模板,在准备好的分级多孔MnO / BC复合材料中形成中孔和大孔。高度多孔且均匀的BC骨架有效地增强了离子扩散和电子转移能力,用作防止MnO破裂和附聚的保护层,从而为两个超级电容器电极提供了MnO / BC复合材料优异的倍率性能和循环稳定性( 20 mA厘米时94%的容量保持率5000次循环后为−2)和锂离子电池阳极(1000次循环后为783 mA h g -1)。值得注意的是,考虑到简单且低成本的制备过程,这项工作为大规模生产用于电化学储能的先进金属氧化物/ BC杂化电极材料开辟了一条有希望的途径。
更新日期:2018-12-04
中文翻译:
熔融盐辅助合成多层多孔MnO @生物碳复合材料作为超级电容器和锂离子电池的有希望的电极材料
生物质衍生的碳复合材料(例如,金属氧化物/生物碳)由于其自然丰度和简单的制备过程而被用作有前途的储能设备电极材料。但是,低含量的负载/金属氧化物的不均匀分布以及生物碳(BC)的低效裂解是妨碍有效利用生物质的棘手障碍。在这项工作中,基于琼脂的优异的盐吸水能力,通过一种简便的熔融盐辅助策略制备了多层多孔MnO / BC复合材料。NaCl的添加通过在高温下形成熔融盐混合物来诱导液体反应介质,从而有效地实现大体积碳的活化和裂化,它也可以作为可回收的牺牲模板,在准备好的分级多孔MnO / BC复合材料中形成中孔和大孔。高度多孔且均匀的BC骨架有效地增强了离子扩散和电子转移能力,用作防止MnO破裂和附聚的保护层,从而为两个超级电容器电极提供了MnO / BC复合材料优异的倍率性能和循环稳定性( 20 mA厘米时94%的容量保持率5000次循环后为−2)和锂离子电池阳极(1000次循环后为783 mA h g -1)。值得注意的是,考虑到简单且低成本的制备过程,这项工作为大规模生产用于电化学储能的先进金属氧化物/ BC杂化电极材料开辟了一条有希望的途径。