当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing the Structural Stability of Ni-Rich Layered Oxide Cathodes with a Preformed Zr-Concentrated Defective Nanolayer
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-10-29 00:00:00 , DOI: 10.1021/acsami.8b11112
Bo Han 1 , Sheng Xu 2 , Shuai Zhao 1 , Guixian Lin 1 , Yuzhang Feng 2 , Libao Chen 1 , Douglas G. Ivey 3 , Peng Wang 2 , Weifeng Wei 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-10-29 00:00:00 , DOI: 10.1021/acsami.8b11112
Bo Han 1 , Sheng Xu 2 , Shuai Zhao 1 , Guixian Lin 1 , Yuzhang Feng 2 , Libao Chen 1 , Douglas G. Ivey 3 , Peng Wang 2 , Weifeng Wei 1
Affiliation
![]() |
Nickel-rich layered oxides (NLOs) exhibit great potential to meet the ever-growing demand for further increases in the energy density of Li-ion batteries because of their high specific capacities. However, NLOs usually suffer from severe structural degradation and undesired side reactions when cycled above 4.3 V. These effects are strongly correlated with the surface structure and chemistry of the active NLO materials. Herein, we demonstrate a preformed cation-mixed (Fm3̅m) surface nanolayer (∼5 nm) that shares a consistent oxygen framework with the layered lattice through Zr modification, in which Ni cations reside in Li slabs and play the role of a “pillar”. This preformed nanolayer alleviates the detrimental phase transformations upon electrochemical cycling, effectively enhancing the structural stability. As a result, the Zr-modified Li(Ni0.8Co0.1Mn0.1)0.985Zr0.015O2 material exhibits a high reversible discharge capacity of ∼210 mA h/g at 0.1 C (1 C = 200 mA/g) and outstanding cycling stability with a capacity retention of 93.2% after 100 cycles between 2.8 and 4.5 V. This strategy may be further extended to design and prepare other high-performance layered oxide cathode materials.
中文翻译:
用预先形成的Zr浓缩缺陷纳米层提高富镍层状氧化物阴极的结构稳定性
富镍层状氧化物(NLO)具有很高的潜力,因为它们具有较高的比容量,因此可以满足锂离子电池能量密度进一步提高的不断增长的需求。但是,当在高于4.3 V的电压下循环时,NLO通常会遭受严重的结构退化和不良副反应。这些影响与活性NLO材料的表面结构和化学性质密切相关。在这里,我们展示了一个预制的阳离子混合(FM 3米)表面纳米层(约5 nm),通过Zr改性与层状晶格共享一致的氧骨架,其中Ni阳离子驻留在Li平板中,并起“支柱”的作用。这种预先形成的纳米层减轻了电化学循环时有害的相变,有效地增强了结构稳定性。结果,Zr改性的Li(Ni 0.8 Co 0.1 Mn 0.1)0.985 Zr 0.015 O 2 这种材料在0.1 C(1 C = 200 mA / g)时表现出约210 mA h / g的高可逆放电容量,并具有出色的循环稳定性,在2.8至4.5 V之间的100次循环后,容量保持率为93.2%。进一步扩展到设计和制备其他高性能的分层氧化物阴极材料。
更新日期:2018-10-29
中文翻译:

用预先形成的Zr浓缩缺陷纳米层提高富镍层状氧化物阴极的结构稳定性
富镍层状氧化物(NLO)具有很高的潜力,因为它们具有较高的比容量,因此可以满足锂离子电池能量密度进一步提高的不断增长的需求。但是,当在高于4.3 V的电压下循环时,NLO通常会遭受严重的结构退化和不良副反应。这些影响与活性NLO材料的表面结构和化学性质密切相关。在这里,我们展示了一个预制的阳离子混合(FM 3米)表面纳米层(约5 nm),通过Zr改性与层状晶格共享一致的氧骨架,其中Ni阳离子驻留在Li平板中,并起“支柱”的作用。这种预先形成的纳米层减轻了电化学循环时有害的相变,有效地增强了结构稳定性。结果,Zr改性的Li(Ni 0.8 Co 0.1 Mn 0.1)0.985 Zr 0.015 O 2 这种材料在0.1 C(1 C = 200 mA / g)时表现出约210 mA h / g的高可逆放电容量,并具有出色的循环稳定性,在2.8至4.5 V之间的100次循环后,容量保持率为93.2%。进一步扩展到设计和制备其他高性能的分层氧化物阴极材料。