当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Postsynthesis Doping of Mn and Yb into CsPbX3 (X = Cl, Br, or I) Perovskite Nanocrystals for Downconversion Emission
Chemistry of Materials ( IF 7.2 ) Pub Date : 2018-10-25 00:00:00 , DOI: 10.1021/acs.chemmater.8b03066 Wasim J. Mir , Yogesh Mahor , Amruta Lohar 1 , Metikoti Jagadeeswararao , Shyamashis Das 2 , Shailaja Mahamuni 1 , Angshuman Nag
Chemistry of Materials ( IF 7.2 ) Pub Date : 2018-10-25 00:00:00 , DOI: 10.1021/acs.chemmater.8b03066 Wasim J. Mir , Yogesh Mahor , Amruta Lohar 1 , Metikoti Jagadeeswararao , Shyamashis Das 2 , Shailaja Mahamuni 1 , Angshuman Nag
Affiliation
Doping Mn and Yb into CsPbX3 (X = Cl, Br, or I) nanocrystals (NCs) yields luminescence due to de-excitation through d–d (yellow-red emission) and f–f transitions (near-infrared emission), respectively. However, to date, both Mn emission and Yb emission have been obtained from perovskite NCs with a wider band gap (<480 nm). To overcome this problem, we have developed a postsynthesis doping method in which Mn and Yb can be easily doped into preformed CsPbX3 NCs with band gaps in the entire visible region. Different morphologies like nanoplatelets and nanocubes are doped. Because we dope preformed host NCs, the effect of dopants on optical properties can be studied more reliably using the same batch of host NCs for both undoped and doped samples. We find that the problem of the absence of Mn emission from Mn-doped CsPbBr3 NCs can be overcome by suppressing back energy transfer from Mn to host NCs, either by increasing the band gap of the host by quantum confinement or by measuring photoluminescence at lower temperatures. Interestingly, dopants are found to enhance the excitonic emission intensities and reduce the Urbach absorption tail, suggesting a reduced defect density compared to that of undoped NCs. These added functionalities and capability to dope lower-band gap materials can be explored further for near-infrared light-emitting diodes, sensing, and luminescent solar concentrators of desired colors.
中文翻译:
Mn和Yb的合成后掺杂到CsPbX 3(X = Cl,Br或I)钙钛矿纳米晶体中以进行下转换发射
将Mn和Yb掺杂到CsPbX 3(X = Cl,Br或I)纳米晶体(NCs)中会由于d-d(黄红色发射)和f-f跃迁(近红外发射)的去激发而产生发光,分别。但是,到目前为止,Mn发射和Yb发射均来自具有较宽禁带宽度(<480 nm)的钙钛矿型NC。为了克服这个问题,我们开发了一种后合成掺杂方法,其中可以将Mn和Yb容易地掺杂到预制的CsPbX 3中在整个可见区域内均具有带隙的NC。掺杂了诸如纳米片和纳米立方体的不同形态。由于我们对预制的宿主NC进行掺杂,因此对于未掺杂和掺杂的样品,使用同一批宿主NC可以更可靠地研究掺杂剂对光学性能的影响。我们发现,掺杂锰的CsPbBr 3不存在锰发射的问题可以通过抑制量子从量子阱中增加主体的带隙或通过在较低温度下测量光致发光来抑制从Mn到主体NC的反向能量转移来克服NC。有趣的是,发现掺杂物可增强激子发射强度并减少Urbach吸收尾,这表明与未掺杂的NC相比,缺陷密度降低了。可以为具有所需颜色的近红外发光二极管,传感和发光太阳能聚光器进一步探索这些掺杂低带隙材料的附加功能和能力。
更新日期:2018-10-25
中文翻译:
Mn和Yb的合成后掺杂到CsPbX 3(X = Cl,Br或I)钙钛矿纳米晶体中以进行下转换发射
将Mn和Yb掺杂到CsPbX 3(X = Cl,Br或I)纳米晶体(NCs)中会由于d-d(黄红色发射)和f-f跃迁(近红外发射)的去激发而产生发光,分别。但是,到目前为止,Mn发射和Yb发射均来自具有较宽禁带宽度(<480 nm)的钙钛矿型NC。为了克服这个问题,我们开发了一种后合成掺杂方法,其中可以将Mn和Yb容易地掺杂到预制的CsPbX 3中在整个可见区域内均具有带隙的NC。掺杂了诸如纳米片和纳米立方体的不同形态。由于我们对预制的宿主NC进行掺杂,因此对于未掺杂和掺杂的样品,使用同一批宿主NC可以更可靠地研究掺杂剂对光学性能的影响。我们发现,掺杂锰的CsPbBr 3不存在锰发射的问题可以通过抑制量子从量子阱中增加主体的带隙或通过在较低温度下测量光致发光来抑制从Mn到主体NC的反向能量转移来克服NC。有趣的是,发现掺杂物可增强激子发射强度并减少Urbach吸收尾,这表明与未掺杂的NC相比,缺陷密度降低了。可以为具有所需颜色的近红外发光二极管,传感和发光太阳能聚光器进一步探索这些掺杂低带隙材料的附加功能和能力。