当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic Reducibility Scales with Intergranular Interface Area in Consolidated In2O3 Nanoparticles Powders
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2016-02-22 00:00:00 , DOI: 10.1021/acs.jpcc.5b10648
Daniel Thomele 1, 2 , Nicolas Siedl 2 , Johannes Bernardi 3 , Oliver Diwald 1
Affiliation  

Interfaces between nanoparticles of reducible metal oxides play a critical role for stoichiometry changes and associated self-doping effects. We explored the susceptibility of consolidated In2O3 nanoparticle ensembles exhibiting enhanced concentrations of intergranular interfaces toward vacuum annealing induced lattice oxygen depletion. Dielectric loss effects observed for nonstoichiometric In2O3–x nanoparticles inside the cavity of an Electron Paramagnetic Resonance (EPR) spectrometer system were used to determine trends in oxygen deficiency and n-type doping level for differently consolidated nanoparticle powders. Moreover, interfacial electron transfer from the In2O3–x nanoparticles to O2 was utilized to evaluate the abundance of paramagnetic O2δ− adsorbates as a function of different levels of nanoparticle consolidation. Both particle aggregation inside aqueous nanoparticle dispersions, which is driven by capillary forces, and mechanical powder compaction were employed for the adjustment of intergranular interface area. For the first time, we observed a clear correlation between reducibility of In2O3–x nanoparticles achieved by vacuum annealing and the amount of intergranular interface area. This study clearly underlines the multiple role of intergranular interfaces. Inside ensembles of semiconducting oxide nanoparticles, they not only provide diffusion paths for charge carriers, but also offer a handle to adjust the n-type doping level via heat treatment in vacuum or other reducing gas atmospheres.

中文翻译:

2 O 3纳米颗粒粉末中具有晶界界面区域的电子还原性尺度。

可还原金属氧化物的纳米粒子之间的界面对于化学计量的变化和相关的自掺杂效应起着至关重要的作用。我们探索了固结的In 2 O 3纳米粒子团的敏感性,这些团簇对真空退火引起的晶格氧耗竭表现出更高的晶间界面浓度。在电子顺磁共振(EPR)光谱仪系统腔体内观察到的非化学计量In 2 O 3– x纳米粒子的介电损耗效应,用于确定氧浓度和不同固结纳米粒子粉末的n型掺杂水平的趋势。而且,界面电子从In 2 O 3–X纳米颗粒至O 2被用于评估顺磁性的O丰2 δ-吸附物如不同水平的纳米颗粒固结的函数。纳米颗粒水分散体内部的颗粒聚集(由毛细管力驱动)和机械粉末压实均用于调节晶间界面面积。第一次,我们观察到In 2 O 3– x的还原性之间存在明显的相关性。通过真空退火获得的纳米颗粒和晶间界面面积的数量。这项研究清楚地强调了晶间界面的多重作用。在半导体氧化物纳米粒子的整体内部,它们不仅为电荷载流子提供了扩散路径,而且还提供了通过在真空或其他还原性气体气氛中进行热处理来调节n型掺杂水平的方法。
更新日期:2016-02-22
down
wechat
bug