当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis
ACS Catalysis ( IF 11.3 ) Pub Date : 2018-10-23 00:00:00 , DOI: 10.1021/acscatal.8b03489 Jiande Chen 1 , Feng Zheng 2 , Shao-Jian Zhang 1 , Adrian Fisher 2 , Yao Zhou 1 , Zeyu Wang 3 , Yuyang Li 4 , Bin-Bin Xu 4 , Jun-Tao Li 1 , Shi-Gang Sun 1, 4
ACS Catalysis ( IF 11.3 ) Pub Date : 2018-10-23 00:00:00 , DOI: 10.1021/acscatal.8b03489 Jiande Chen 1 , Feng Zheng 2 , Shao-Jian Zhang 1 , Adrian Fisher 2 , Yao Zhou 1 , Zeyu Wang 3 , Yuyang Li 4 , Bin-Bin Xu 4 , Jun-Tao Li 1 , Shi-Gang Sun 1, 4
Affiliation
Toward the pursuit of high-performance Ni2+/Co2+/Fe3+-relevant oxygen evolution reaction (OER) electrocatalysts, the modulation of local electronic structure of the active metal sites provides the fundamental motif, which could be achieved either through direct modifications of local chemical environment or interfacial interaction with a second metal substrate which possesses high electronegativity (typically noble metal Au). Herein, we report that the local electronic structure of Ni–Fe layered double hydroxide (LDH) could be favorably modulated through strong interfacial interactions with FeOOH nanoparticles (NPs). The biphasic and multiscale composites FeOOH/LDH demonstrated an increasingly pronounced synergy effect for OER catalysis when the average size of FeOOH NPs decreases from 18.0 to 2.0 nm. Particularly, the composite with average size of FeOOH NPs of 2.0 nm exhibited an overpotential of 174 mV at 10 mA cm–2 and a tafel slope of 27 mV dec–1 in 1.0 M KOH, outmatching all the noble and non-noble OER catalysts reported so far; it also operates smoothly in various stability tests. A mechanistic study based on XANES and EXAFS analysis, d.c. voltammetry and large amplitude Fourier Transformed a.c. voltammetry proved the presence of high-oxidation-state Fe(3+δ)+sites with relatively short Fe(3+δ)+–O bond from the highly unsaturated ultrafine FeOOH NPs which could reform the local electronic structure and favorably manipulate the electronic oxidation and thus electrocatalytic behaviors of the Ni2+ species in the Ni–Fe LDH, hence leading to the easy formation, excellent OER activity, and extraordinary structural and catalytic stability. Our work puts an emphasis on the role of the solid–solid interfacial chemistry between a Ni–Fe LDH and a non-noble-metal component in engineering the local electronic structure of the active metal sites, which successfully pushed forward the catalytic activity of the well-studied Ni–Fe LDH far beyond its current limit in OER catalysis and opened up an avenue for rational design of OER electrocatalysts.
中文翻译:
FeOOH和Ni-Fe LDH之间的界面相互作用调节增强OER电催化作用的局部电子结构
追求高性能Ni 2+ / Co 2+ / Fe 3+-相关的氧释放反应(OER)电催化剂,活性金属位点的局部电子结构的调节提供了基本的基序,这可以通过直接修改局部化学环境或与具有高电负性的第二种金属底物的界面相互作用来实现(通常是贵金属Au)。在这里,我们报道镍铁层状双氢氧化物(LDH)的局部电子结构可以通过与FeOOH纳米颗粒(NPs)的强界面相互作用而受到有利地调节。当FeOOH NP的平均尺寸从18.0减小到2.0 nm时,两相和多尺度复合材料FeOOH / LDH对OER催化显示出越来越明显的协同作用。特别是,FeOOH NP的平均尺寸为2的复合材料。–2和在1.0 M KOH中的tafel斜度为27 mV dec –1,超过了迄今为止报道的所有贵金属和非贵金属OER催化剂;它在各种稳定性测试中也能平稳运行。基于XANES和EXAFS分析,直流伏安法和大振幅傅立叶变换交流伏安法的机理研究证明,存在高氧化态的Fe (3 +δ)+位点,而Fe (3 +δ)+ -O键相对较短高度不饱和的超细FeOOH NP,它们可以改变局部电子结构,并有利地控制Ni 2+的电子氧化和电催化行为Ni-Fe LDH中存在多种杂质,因此易于形成,具有出色的OER活性,并具有出色的结构和催化稳定性。我们的工作重点是Ni-Fe LDH和非贵金属组分之间的固-固界面化学在工程化活性金属位点的局部电子结构中的作用,从而成功地推动了该催化剂的催化活性。经过深入研究的Ni-Fe LDH远远超出了其在OER催化中的电流极限,并为合理设计OER电催化剂开辟了道路。
更新日期:2018-10-23
中文翻译:
FeOOH和Ni-Fe LDH之间的界面相互作用调节增强OER电催化作用的局部电子结构
追求高性能Ni 2+ / Co 2+ / Fe 3+-相关的氧释放反应(OER)电催化剂,活性金属位点的局部电子结构的调节提供了基本的基序,这可以通过直接修改局部化学环境或与具有高电负性的第二种金属底物的界面相互作用来实现(通常是贵金属Au)。在这里,我们报道镍铁层状双氢氧化物(LDH)的局部电子结构可以通过与FeOOH纳米颗粒(NPs)的强界面相互作用而受到有利地调节。当FeOOH NP的平均尺寸从18.0减小到2.0 nm时,两相和多尺度复合材料FeOOH / LDH对OER催化显示出越来越明显的协同作用。特别是,FeOOH NP的平均尺寸为2的复合材料。–2和在1.0 M KOH中的tafel斜度为27 mV dec –1,超过了迄今为止报道的所有贵金属和非贵金属OER催化剂;它在各种稳定性测试中也能平稳运行。基于XANES和EXAFS分析,直流伏安法和大振幅傅立叶变换交流伏安法的机理研究证明,存在高氧化态的Fe (3 +δ)+位点,而Fe (3 +δ)+ -O键相对较短高度不饱和的超细FeOOH NP,它们可以改变局部电子结构,并有利地控制Ni 2+的电子氧化和电催化行为Ni-Fe LDH中存在多种杂质,因此易于形成,具有出色的OER活性,并具有出色的结构和催化稳定性。我们的工作重点是Ni-Fe LDH和非贵金属组分之间的固-固界面化学在工程化活性金属位点的局部电子结构中的作用,从而成功地推动了该催化剂的催化活性。经过深入研究的Ni-Fe LDH远远超出了其在OER催化中的电流极限,并为合理设计OER电催化剂开辟了道路。