当前位置:
X-MOL 学术
›
CrystEngComm
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synthesis of core–shell ZIF-67@Co-MOF-74 catalyst with controllable shell thickness and enhanced photocatalytic activity for visible light-driven water oxidation†
CrystEngComm ( IF 2.6 ) Pub Date : 2018-10-23 00:00:00 , DOI: 10.1039/c8ce01266k Changyan Guo 1, 2, 3, 4, 5 , Jia Guo 1, 2, 3, 4, 5 , Yonghong Zhang 1, 2, 3, 4, 5 , Di Wang 1, 2, 3, 4, 5 , Li Zhang 1, 2, 3, 4, 5 , Yuan Guo 1, 2, 3, 4, 5 , Wenlan Ma 1, 2, 3, 4, 5 , Jide Wang 1, 2, 3, 4, 5
CrystEngComm ( IF 2.6 ) Pub Date : 2018-10-23 00:00:00 , DOI: 10.1039/c8ce01266k Changyan Guo 1, 2, 3, 4, 5 , Jia Guo 1, 2, 3, 4, 5 , Yonghong Zhang 1, 2, 3, 4, 5 , Di Wang 1, 2, 3, 4, 5 , Li Zhang 1, 2, 3, 4, 5 , Yuan Guo 1, 2, 3, 4, 5 , Wenlan Ma 1, 2, 3, 4, 5 , Jide Wang 1, 2, 3, 4, 5
Affiliation
In this paper, a core–shell ZIF-67@Co-MOF-74 catalyst was synthesized by coating 2,5-dihydroxyterephthalic acid (DHTP) molecules on the surface of ZIF-67 crystals via the ligand exchange method. Notably, the ZIF-67@Co-MOF-74 catalyst with shell thicknesses of 10 nm, 25 nm and 50 nm can be further obtained by adjusting the mass ratio of ZIF-67 and DHTP. Compared to individual ZIF-67 or Co-MOF-74 catalyst, the as-prepared core–shell MOF catalyst exhibited enhanced photocatalytic activities for light-driven water oxidation reaction. Furthermore, the content of oxygen evolution by water splitting increased gradually with the increase in shell thickness. The formation of crystal defects and the uncoordinated hydroxyl and carboxyl groups on the surface of core–shell MOFs facilitated the exposure of the metal catalytic center and the adsorption of water molecules through hydrogen bonding interactions to react with the catalytic active center effectively. In addition, the photogenerated holes and electrons could be excellently separated and rapidly transferred at the interface of ZIF-67 (core) and Co-MOF-74 (shell), resulting in effective increase in the interfacial charge transfer rate. Furthermore, this simple and novel method is also applicable to three other carboxylic acid ligands, which implies that it may be a general method that can be extended to other ligands for fabricating different core–shell ZIF-67@MOF crystals.
中文翻译:
具有可控制的壳厚度和增强的光催化活性的可见光驱动水氧化的核壳ZIF-67 @ Co-MOF-74催化剂的合成†
在本文中,具有核-壳ZIF-67 @共同MOF-74催化剂通过ZIF-67晶体的表面上涂覆2,5-二羟基对苯二甲酸(DHTP)分子合成通过配体交换方法。值得注意的是,通过调节ZIF-67和DHTP的质量比,可以进一步获得壳厚度为10nm,25nm和50nm的ZIF-67 @ Co-MOF-74催化剂。与单独的ZIF-67或Co-MOF-74催化剂相比,所制备的核-壳MOF催化剂对光驱水氧化反应显示出增强的光催化活性。此外,水分解产生的氧的含量随着壳厚度的增加而逐渐增加。核-壳MOF表面上晶体缺陷的形成以及未配位的羟基和羧基促进了金属催化中心的暴露和水分子通过氢键相互作用的吸附,从而有效地与催化活性中心反应。此外,在ZIF-67(核)和Co-MOF-74(壳)的界面处,光生空穴和电子可以很好地分离并迅速转移,从而有效地提高了界面电荷转移率。此外,这种简单新颖的方法还适用于其他三个羧酸配体,这意味着它可能是一种通用方法,可以扩展到其他配体上,以制造不同的核-壳ZIF-67 @ MOF晶体。
更新日期:2018-10-23
中文翻译:
具有可控制的壳厚度和增强的光催化活性的可见光驱动水氧化的核壳ZIF-67 @ Co-MOF-74催化剂的合成†
在本文中,具有核-壳ZIF-67 @共同MOF-74催化剂通过ZIF-67晶体的表面上涂覆2,5-二羟基对苯二甲酸(DHTP)分子合成通过配体交换方法。值得注意的是,通过调节ZIF-67和DHTP的质量比,可以进一步获得壳厚度为10nm,25nm和50nm的ZIF-67 @ Co-MOF-74催化剂。与单独的ZIF-67或Co-MOF-74催化剂相比,所制备的核-壳MOF催化剂对光驱水氧化反应显示出增强的光催化活性。此外,水分解产生的氧的含量随着壳厚度的增加而逐渐增加。核-壳MOF表面上晶体缺陷的形成以及未配位的羟基和羧基促进了金属催化中心的暴露和水分子通过氢键相互作用的吸附,从而有效地与催化活性中心反应。此外,在ZIF-67(核)和Co-MOF-74(壳)的界面处,光生空穴和电子可以很好地分离并迅速转移,从而有效地提高了界面电荷转移率。此外,这种简单新颖的方法还适用于其他三个羧酸配体,这意味着它可能是一种通用方法,可以扩展到其他配体上,以制造不同的核-壳ZIF-67 @ MOF晶体。