当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2018-10-22 , DOI: 10.1021/jacs.8b07858 Haijun Yu 1 , Yeong-Gi So 2 , Yang Ren 3 , Tianhao Wu 1 , Gencai Guo 1 , Ruijuan Xiao 4 , Jun Lu 5 , Hong Li 4 , Yubo Yang 1 , Haoshen Zhou 6 , Ruzhi Wang 1 , Khalil Amine 5 , Yuichi Ikuhara 2
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2018-10-22 , DOI: 10.1021/jacs.8b07858 Haijun Yu 1 , Yeong-Gi So 2 , Yang Ren 3 , Tianhao Wu 1 , Gencai Guo 1 , Ruijuan Xiao 4 , Jun Lu 5 , Hong Li 4 , Yubo Yang 1 , Haoshen Zhou 6 , Ruzhi Wang 1 , Khalil Amine 5 , Yuichi Ikuhara 2
Affiliation
Cathodes of lithium-rich layered oxides for high-energy Li-ion batteries in electrically powered vehicles are attracting considerable attention by the research community. However, current research is insufficient to account for their complex reaction mechanism and application. Here, the structural evolution of lithium-manganese-rich layered oxides at different temperatures during electrochemical cycling has been investigated thoroughly, and their structural stability has been designed. The results indicated structure conversion from the two structures into a core-shell structure with a single distorted-monoclinic LiTMO2 structure core and disordered-spinel/rock salt structure shell, along with lattice oxygen extraction and lattice densification, transition- metal migration, and aggregation on the crystal surface. The structural conversion behavior was found to be seriously temperature sensitive, accelerated with higher temperature, and can be effectively adjusted by structural design. This study clarifies the structural evolution mechanism of these lithium-rich layered oxides and opens the door to the design of similar high-energy materials with better cycle stability.
中文翻译:
锂离子电池富锂锰层状氧化物的温敏结构演变
用于电动汽车高能锂离子电池的富锂层状氧化物阴极正引起研究界的广泛关注。然而,目前的研究不足以解释它们复杂的反应机理和应用。在这里,对电化学循环过程中不同温度下富锂锰层状氧化物的结构演变进行了彻底的研究,并设计了它们的结构稳定性。结果表明,从两种结构转变为具有单个扭曲单斜 LiTMO2 结构核和无序尖晶石/岩盐结构壳的核壳结构,以及晶格氧提取和晶格致密化、过渡金属迁移和聚集在晶体表面。发现结构转换行为对温度非常敏感,随着温度的升高而加速,并且可以通过结构设计进行有效调整。该研究阐明了这些富锂层状氧化物的结构演化机制,并为设计具有更好循环稳定性的类似高能材料打开了大门。
更新日期:2018-10-22
中文翻译:
锂离子电池富锂锰层状氧化物的温敏结构演变
用于电动汽车高能锂离子电池的富锂层状氧化物阴极正引起研究界的广泛关注。然而,目前的研究不足以解释它们复杂的反应机理和应用。在这里,对电化学循环过程中不同温度下富锂锰层状氧化物的结构演变进行了彻底的研究,并设计了它们的结构稳定性。结果表明,从两种结构转变为具有单个扭曲单斜 LiTMO2 结构核和无序尖晶石/岩盐结构壳的核壳结构,以及晶格氧提取和晶格致密化、过渡金属迁移和聚集在晶体表面。发现结构转换行为对温度非常敏感,随着温度的升高而加速,并且可以通过结构设计进行有效调整。该研究阐明了这些富锂层状氧化物的结构演化机制,并为设计具有更好循环稳定性的类似高能材料打开了大门。