当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nickel–Cobalt Double Hydroxide as a Multifunctional Mediator for Ultrahigh‐Rate and Ultralong‐Life Li–S Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2018-10-15 , DOI: 10.1002/aenm.201802431 Long Zhang 1 , Zhongxin Chen 2 , Nanchen Dongfang 1 , Mengxiong Li 1 , Caozheng Diao 3 , Qingsong Wu 4 , Xiao Chi 3 , Peilu Jiang 1 , Zedong Zhao 1 , Lei Dong 1 , Renchao Che 4 , Kian Ping Loh 2 , Hongbin Lu 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2018-10-15 , DOI: 10.1002/aenm.201802431 Long Zhang 1 , Zhongxin Chen 2 , Nanchen Dongfang 1 , Mengxiong Li 1 , Caozheng Diao 3 , Qingsong Wu 4 , Xiao Chi 3 , Peilu Jiang 1 , Zedong Zhao 1 , Lei Dong 1 , Renchao Che 4 , Kian Ping Loh 2 , Hongbin Lu 1
Affiliation
The performance of lithium–sulfur (Li–S) batteries is largely hindered by the shuttle effect caused by the dissolution of lithium polysulfides (LiPSs) and the sluggish reaction kinetics of LiPSs. Here, it is demonstrated that the nickel–cobalt double hydroxide (NiCo‐DH) shells that encapsulate sulfur nanoparticles can play multiple roles in suppressing the shuttle effect and accelerating the redox kinetics of LiPSs by combining with graphene and carbon nanotubes to construct the conductive networks. The NiCo‐DH shell that intimately contacts with sulfur physically confines the loss of sulfur and promotes the charge transfer and ion diffusion. More importantly, it can react with LiPSs to produce the surface‐bound intermediates, which are able to anchor the soluble LiPSs and accelerate the redox kinetics. Such composite electrodes can load high contents of sulfur (>85 wt%) and the resulting Li–S battery exhibits a superior capacity (1348.1 mAh g−1 at 0.1 C), ultrahigh rate performance (697.7 mAh g−1 at 5 C), and ultralong cycle life (1500 cycles) with a decay rate of 0.015% per cycle.
中文翻译:
镍钴双氢氧化物作为超高倍率和超长寿命Li-S电池的多功能介体
锂硫(Li-S)电池的性能在很大程度上受到多硫化锂(LiPSs)溶解和LiPSs反应动力学缓慢引起的穿梭效应的影响。在此证明,包裹硫纳米颗粒的镍钴双氢氧化物(NiCo-DH)壳可以通过与石墨烯和碳纳米管结合构成导电网络,从而在抑制穿梭效应和加速LiPS的氧化还原动力学中发挥多种作用。 。与硫紧密接触的NiCo-DH壳层在物理上限制了硫的损失,并促进了电荷转移和离子扩散。更重要的是,它可以与LiPSs反应生成表面结合的中间体,该中间体能够固定可溶性LiPSs并加速氧化还原动力学。在0.1 C时为-1),超高倍率性能(在5 C时为697.7 mAh g -1)和超长循环寿命(1500个循环),每个循环的衰减率为0.015%。
更新日期:2018-10-15
中文翻译:
镍钴双氢氧化物作为超高倍率和超长寿命Li-S电池的多功能介体
锂硫(Li-S)电池的性能在很大程度上受到多硫化锂(LiPSs)溶解和LiPSs反应动力学缓慢引起的穿梭效应的影响。在此证明,包裹硫纳米颗粒的镍钴双氢氧化物(NiCo-DH)壳可以通过与石墨烯和碳纳米管结合构成导电网络,从而在抑制穿梭效应和加速LiPS的氧化还原动力学中发挥多种作用。 。与硫紧密接触的NiCo-DH壳层在物理上限制了硫的损失,并促进了电荷转移和离子扩散。更重要的是,它可以与LiPSs反应生成表面结合的中间体,该中间体能够固定可溶性LiPSs并加速氧化还原动力学。在0.1 C时为-1),超高倍率性能(在5 C时为697.7 mAh g -1)和超长循环寿命(1500个循环),每个循环的衰减率为0.015%。