当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bioinspired Modification via Green Synthesis of Mussel-Inspired Nanoparticles on Carbon Fiber Surface for Advanced Composite Materials
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-10-13 00:00:00 , DOI: 10.1021/acssuschemeng.8b03590 Bo Gao 1, 2 , Wentao Du 3 , Zhenna Hao 2 , Haifeng Zhou 3 , Dechun Zou 1 , Ruliang Zhang 2
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-10-13 00:00:00 , DOI: 10.1021/acssuschemeng.8b03590 Bo Gao 1, 2 , Wentao Du 3 , Zhenna Hao 2 , Haifeng Zhou 3 , Dechun Zou 1 , Ruliang Zhang 2
Affiliation
Carbon fibers with excellent performances suffer from their low surface activity in many applications. Modifying fiber surfaces can improve the properties of fiber–matrix interface, which can expand the usage of carbon fiber in the field of energy. However, there are two main problems in the most traditional researches: the damaged structure of fiber by pretreatment to build the active site, and the weak interaction between fiber and nanoparticles by deposition. Herein, we first report the bioinspired copolymerization of dopamine and poly(amidoamine) on the fiber surface using polydopamine (the versatile adhesives) as an efficient and robust platform to graft poly(amidoamine) onto fiber surface at room temperature. Systematic investigations were performed to explore optimum conditions and the reaction mechanism of copolymerization of dopamine/poly(amidoamine) at different quantities of poly(amidoamine) on carbon fiber surfaces. The novel modification can introduce sufficient functionalization groups on fiber surface without decreasing fiber tensile strength, which can significantly increase the interfacial shear strength and impact strength of the resulting composites to 124.05 MPa and 91.17 KJ/m2, respectively. The novel strategy presents a promising and “green” platform to prepare advanced composite materials for the demand of highly mechanical properties and the usages of energy conservation.
中文翻译:
在绿色碳纤维表面上通过绿色合成贻贝启发的纳米粒子进行生物启发的改性,以用于高级复合材料
具有优异性能的碳纤维在许多应用中都具有较低的表面活性。修改纤维表面可以改善纤维-基体界面的性能,从而可以扩展碳纤维在能源领域的使用。然而,在最传统的研究中,存在两个主要问题:通过预处理以建立活性位点而使纤维受损的结构,以及通过沉积使纤维与纳米颗粒之间的相互作用弱。在本文中,我们首先报道了在室温下使用聚多巴胺(通用型粘合剂)作为将聚(酰胺基胺)接枝到纤维表面上的有效而坚固的平台,在纤维表面上多巴胺和聚(酰胺基胺)的生物启发共聚反应。进行了系统的研究,以探索在碳纤维表面上不同数量的聚(酰胺基胺)下多巴胺/聚(酰胺基胺)共聚的最佳条件和反应机理。新型改性可以在纤维表面上引入足够的官能化基团,而不会降低纤维的拉伸强度,这可以显着提高所得复合材料的界面剪切强度和冲击强度至124.05 MPa和91.17 KJ / m2,分别。新颖的策略提供了一个有前途且“绿色”的平台,可用于制备高级复合材料,以满足高度机械性能和节约能源的需求。
更新日期:2018-10-13
中文翻译:
在绿色碳纤维表面上通过绿色合成贻贝启发的纳米粒子进行生物启发的改性,以用于高级复合材料
具有优异性能的碳纤维在许多应用中都具有较低的表面活性。修改纤维表面可以改善纤维-基体界面的性能,从而可以扩展碳纤维在能源领域的使用。然而,在最传统的研究中,存在两个主要问题:通过预处理以建立活性位点而使纤维受损的结构,以及通过沉积使纤维与纳米颗粒之间的相互作用弱。在本文中,我们首先报道了在室温下使用聚多巴胺(通用型粘合剂)作为将聚(酰胺基胺)接枝到纤维表面上的有效而坚固的平台,在纤维表面上多巴胺和聚(酰胺基胺)的生物启发共聚反应。进行了系统的研究,以探索在碳纤维表面上不同数量的聚(酰胺基胺)下多巴胺/聚(酰胺基胺)共聚的最佳条件和反应机理。新型改性可以在纤维表面上引入足够的官能化基团,而不会降低纤维的拉伸强度,这可以显着提高所得复合材料的界面剪切强度和冲击强度至124.05 MPa和91.17 KJ / m2,分别。新颖的策略提供了一个有前途且“绿色”的平台,可用于制备高级复合材料,以满足高度机械性能和节约能源的需求。