当前位置:
X-MOL 学术
›
Mol. Pharmaceutics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Inhibitory Effects of Commonly Used Excipients on P-Glycoprotein in Vitro
Molecular Pharmaceutics ( IF 4.5 ) Pub Date : 2018-10-12 00:00:00 , DOI: 10.1021/acs.molpharmaceut.8b00482 Rohan Gurjar 1 , Christina Y. S. Chan 1 , Paul Curley 1 , Joanne Sharp 1 , Justin Chiong 1 , Steve Rannard 2 , Marco Siccardi 1 , Andrew Owen 1
Molecular Pharmaceutics ( IF 4.5 ) Pub Date : 2018-10-12 00:00:00 , DOI: 10.1021/acs.molpharmaceut.8b00482 Rohan Gurjar 1 , Christina Y. S. Chan 1 , Paul Curley 1 , Joanne Sharp 1 , Justin Chiong 1 , Steve Rannard 2 , Marco Siccardi 1 , Andrew Owen 1
Affiliation
Pharmaceutical excipients are no longer considered inert and have been shown to influence the activity of metabolic enzymes and transporters, resulting in altered pharmacokinetics of substrate drugs. In this study, the effect of 25 excipients commonly used in drug formulations were investigated for their effect on P-glycoprotein (P-gp) activity. The effect of excipients on P-gp were assessed by measuring the change in the cellular accumulation of a P-gp substrate, digoxin, in MDCK-MDR1 (Madin Darby canine kidney transfected with multidrug resistance 1 gene) cells. The cells were exposed to low (10 μM) and high (200 μM) concentrations of excipient along with 10 μM digoxin. Excipient concentrations were chosen to span the range of concentrations previously used for investigating activities in vitro. At 10 μM of excipient, an increase in the intracellular digoxin concentration was seen with d-α-tocopherol poly-(ethylene glycol) succinate (Vit-E-PEG; p = 0.002), poly(ethylene oxide)20 sorbitan monooleate (Tween 80; p = 0.001), cetyltrimethylammonium bromide (CTAB; p = 0.021), poly(ethylene oxide)35 modified castor oil (Cremophor EL; p = 0.01), polyethylene glycol15-hydroxystearate (Solutol HS 15; p = 0.006), and poly(ethylene glycol) hexadecyl ether (Brij 58; p = 0.001). At 200 μM, Vit-E-PEG (p < 0.0001), sodium 1,4-bis (2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate (AOT; p < 0.0001), Tween 80 (p < 0.0001), CTAB (p = 0.004), poly(ethylene oxide)20 sorbitan monolaurate (Tween 20; p < 0.0001), Cremophor EL (p < 0.0001), Solutol HS 15 (p < 0.0001), Brij 58 (p < 0.0001), and sodium carboxymethyl cellulose (NaCMC; p = 0.006) increased intracellular digoxin significantly. Concentration-dependent inhibition of P-gp was then investigated for selected excipients giving an IC50 for Vit-E-PEG (12.48 μM), AOT (192.5 μM), Tween 80 (45.29 μM), CTAB (96.67 μM), Tween 20 (74.15 μM), Cremophor EL (11.92 μM), Solutol HS 15 (179.8 μM), Brij 58 (25.22 μM), and NaCMC (46.69 μM). These data add to the growing body of evidence demonstrating that not all excipients are inert and will aid excipient choice for rational formulation development.
中文翻译:
常用辅料对P-糖蛋白的体外抑制作用
药用赋形剂不再被认为是惰性的,并且已经显示出会影响代谢酶和转运蛋白的活性,从而导致底物药物的药代动力学改变。在这项研究中,研究了常用25种赋形剂对P-糖蛋白(P-gp)活性的影响。赋形剂对P-gp的作用是通过测量MDCK-MDR1(多药耐药性1基因转染的Madin Darby犬肾)细胞中P-gp底物地高辛的细胞蓄积变化来评估的。将细胞暴露于低浓度(10μM)和高浓度(200μM)的赋形剂以及10μM地高辛。选择的赋形剂浓度应覆盖先前用于体外研究活动的浓度范围。赋形剂为10μM时,d -α-生育酚聚(乙二醇)琥珀酸酯(Vit-E-PEG; p = 0.002),聚(环氧乙烷)20山梨糖醇单油酸酯(吐温)观察到细胞内地高辛浓度增加80;p = 0.001),十六烷基三甲基溴化铵(CTAB;p = 0.021),聚环氧乙烷35改性蓖麻油(Cremophor EL;p = 0.01),聚乙二醇15-羟基硬脂酸酯(Solutol HS 15;p = 0.006),和聚(乙二醇)十六烷基醚(Brij 58;p = 0.001)。在200μM时,Vit-E-PEG(p<0.0001),1,4-双(2-乙基己氧基)-1,4-二氧代丁烷-2-磺酸钠(AOT; p <0.0001),吐温80(p <0.0001),CTAB(p = 0.004),聚(环氧乙烷)20脱水山梨糖醇单月桂酸酯(Tween 20; p <0.0001),Cremophor EL(p <0.0001),Solutol HS 15(p <0.0001),Brij 58(p <0.0001)和羧甲基纤维素钠(NaCMC; p = 0.006 )显着增加了细胞内地高辛的含量。然后研究了选定的赋形剂对P-gp的浓度依赖性抑制作用,得出IC 50适用于Vit-E-PEG(12.48μM),AOT(192.5μM),Tween 80(45.29μM),CTAB(96.67μM),Tween 20(74.15μM),Cremophor EL(11.92μM),Solutol HS 15(179.8μM) ),Brij 58(25.22μM)和NaCMC(46.69μM)。这些数据增加了越来越多的证据,表明并非所有的赋形剂都是惰性的,并且将有助于选择合适的赋形剂以促进合理的制剂开发。
更新日期:2018-10-12
中文翻译:
常用辅料对P-糖蛋白的体外抑制作用
药用赋形剂不再被认为是惰性的,并且已经显示出会影响代谢酶和转运蛋白的活性,从而导致底物药物的药代动力学改变。在这项研究中,研究了常用25种赋形剂对P-糖蛋白(P-gp)活性的影响。赋形剂对P-gp的作用是通过测量MDCK-MDR1(多药耐药性1基因转染的Madin Darby犬肾)细胞中P-gp底物地高辛的细胞蓄积变化来评估的。将细胞暴露于低浓度(10μM)和高浓度(200μM)的赋形剂以及10μM地高辛。选择的赋形剂浓度应覆盖先前用于体外研究活动的浓度范围。赋形剂为10μM时,d -α-生育酚聚(乙二醇)琥珀酸酯(Vit-E-PEG; p = 0.002),聚(环氧乙烷)20山梨糖醇单油酸酯(吐温)观察到细胞内地高辛浓度增加80;p = 0.001),十六烷基三甲基溴化铵(CTAB;p = 0.021),聚环氧乙烷35改性蓖麻油(Cremophor EL;p = 0.01),聚乙二醇15-羟基硬脂酸酯(Solutol HS 15;p = 0.006),和聚(乙二醇)十六烷基醚(Brij 58;p = 0.001)。在200μM时,Vit-E-PEG(p<0.0001),1,4-双(2-乙基己氧基)-1,4-二氧代丁烷-2-磺酸钠(AOT; p <0.0001),吐温80(p <0.0001),CTAB(p = 0.004),聚(环氧乙烷)20脱水山梨糖醇单月桂酸酯(Tween 20; p <0.0001),Cremophor EL(p <0.0001),Solutol HS 15(p <0.0001),Brij 58(p <0.0001)和羧甲基纤维素钠(NaCMC; p = 0.006 )显着增加了细胞内地高辛的含量。然后研究了选定的赋形剂对P-gp的浓度依赖性抑制作用,得出IC 50适用于Vit-E-PEG(12.48μM),AOT(192.5μM),Tween 80(45.29μM),CTAB(96.67μM),Tween 20(74.15μM),Cremophor EL(11.92μM),Solutol HS 15(179.8μM) ),Brij 58(25.22μM)和NaCMC(46.69μM)。这些数据增加了越来越多的证据,表明并非所有的赋形剂都是惰性的,并且将有助于选择合适的赋形剂以促进合理的制剂开发。