当前位置:
X-MOL 学术
›
Small Methods
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Heteroatom‐Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodium‐Ion Batteries
Small Methods ( IF 10.7 ) Pub Date : 2018-10-08 , DOI: 10.1002/smtd.201800323 Weimin Chen 1 , Min Wan 2 , Qing Liu 2 , Xiaoqin Xiong 2 , Faquan Yu 1 , Yunhui Huang 2
Small Methods ( IF 10.7 ) Pub Date : 2018-10-08 , DOI: 10.1002/smtd.201800323 Weimin Chen 1 , Min Wan 2 , Qing Liu 2 , Xiaoqin Xiong 2 , Faquan Yu 1 , Yunhui Huang 2
Affiliation
Sodium‐ion batteries (SIBs) show promising application in large‐scale energy storage as future alternatives to lithium‐ion batteries. Carbonaceous materials are attractive anode candidates for SIBs due to low cost, abundance, and high safety. In general, doping heteroatoms such as N, B, O, S, and P in carbon‐based materials gives rise to high electronic mobility, good sodium mobility, and enhanced capacity, showing a great potential in sodium storage. This review summarizes the recent progress in the design, synthesis, and electrochemical properties of heteroatom‐doped carbon anodes, including one‐element doped carbons and several‐elements codoped carbons, aiming to help the readers comprehensively learn how to fabricate heteroatom‐doped carbons and use them in SIBs. Additionally, the advantages, mechanism, critical issues, and possible solutions of heteroatom‐doped carbons are discussed and the future research trends are proposed. This will provide a deep insight into the development of SIBs anode materials.
中文翻译:
杂原子掺杂碳材料:钠离子电池的合成,机理和应用
钠离子电池(SIB)作为锂离子电池的未来替代品,在大规模储能中显示出广阔的应用前景。碳质材料因其低成本,丰富和高安全性而成为SIB极具吸引力的阳极候选材料。通常,在碳基材料中掺杂杂原子(例如N,B,O,S和P)会带来较高的电子迁移率,良好的钠迁移率和增强的容量,从而显示出巨大的钠存储潜力。这篇综述总结了杂原子掺杂碳阳极在设计,合成和电化学性能方面的最新进展,包括单元素掺杂碳和多元素共掺杂碳,旨在帮助读者全面学习如何制造杂原子掺杂碳。在SIB中使用它们。此外,优势,机制,关键问题,讨论了杂原子掺杂碳的可能解决方案,并提出了未来的研究趋势。这将为SIB负极材料的开发提供深入的见识。
更新日期:2018-10-08
中文翻译:
杂原子掺杂碳材料:钠离子电池的合成,机理和应用
钠离子电池(SIB)作为锂离子电池的未来替代品,在大规模储能中显示出广阔的应用前景。碳质材料因其低成本,丰富和高安全性而成为SIB极具吸引力的阳极候选材料。通常,在碳基材料中掺杂杂原子(例如N,B,O,S和P)会带来较高的电子迁移率,良好的钠迁移率和增强的容量,从而显示出巨大的钠存储潜力。这篇综述总结了杂原子掺杂碳阳极在设计,合成和电化学性能方面的最新进展,包括单元素掺杂碳和多元素共掺杂碳,旨在帮助读者全面学习如何制造杂原子掺杂碳。在SIB中使用它们。此外,优势,机制,关键问题,讨论了杂原子掺杂碳的可能解决方案,并提出了未来的研究趋势。这将为SIB负极材料的开发提供深入的见识。