Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Radial Growth Evolution of InGaAs/InP Multi-Quantum-Well Nanowires Grown by Selective-Area Metal Organic Vapor-Phase Epitaxy
ACS Nano ( IF 15.8 ) Pub Date : 2018-10-03 00:00:00 , DOI: 10.1021/acsnano.8b05771 Inseok Yang , Xu Zhang 1 , Changlin Zheng 2 , Qian Gao , Ziyuan Li , Li Li , Mark N. Lockrey , Hieu Nguyen , Philippe Caroff , Joanne Etheridge 2 , Hark Hoe Tan , Chennupati Jagadish , Jennifer Wong-Leung , Lan Fu
ACS Nano ( IF 15.8 ) Pub Date : 2018-10-03 00:00:00 , DOI: 10.1021/acsnano.8b05771 Inseok Yang , Xu Zhang 1 , Changlin Zheng 2 , Qian Gao , Ziyuan Li , Li Li , Mark N. Lockrey , Hieu Nguyen , Philippe Caroff , Joanne Etheridge 2 , Hark Hoe Tan , Chennupati Jagadish , Jennifer Wong-Leung , Lan Fu
Affiliation
III–V semiconductor multi-quantum-well nanowires (MQW NWs) via selective-area epitaxy (SAE) is of great importance for the development of nanoscale light-emitting devices for applications such as optical communication, silicon photonics, and quantum computing. To achieve highly efficient light-emitting devices, not only the high-quality materials but also a deep understanding of their growth mechanisms and material properties (structural, optical, and electrical) are extremely critical. In particular, the three-dimensional growth mechanism of MQWs embedded in a NW structure by SAE is expected to be different from that of those grown in a planar structure or with a catalyst and has not yet been thoroughly investigated. In this work, we reveal a distinctive radial growth evolution of InGaAs/InP MQW NWs grown by the SAE metal organic vapor-phase epitaxy (MOVPE) technique. We observe the formation of zinc blende (ZB) QW discs induced by the axial InGaAs QW growth on the wurtzite (WZ) base-InP NW and propose it as the key factor driving the overall structure of radial growth. The role of the ZB-to-WZ change in the driving of the overall growth evolution is supported by a growth formalism, taking into account the formation-energy difference between different facets. Despite a polytypic crystal structure with mixed ZB and WZ phases across the MQW region, the NWs exhibit high uniformity and desirable QW spatial layout with bright room-temperature photoluminescence at an optical communication wavelength of ∼1.3 μm, which is promising for the future development of high-efficiency light-emitting devices.
中文翻译:
选择性区域金属有机气相外延生长的InGaAs / InP多量子阱纳米线的径向生长演化
III–V半导体多量子阱纳米线(MQW NW)通过选择性区域外延(SAE)对于开发用于光通信,硅光子学和量子计算等应用的纳米级发光器件非常重要。为了获得高效的发光器件,不仅高质量的材料,而且对其生长机理和材料特性(结构,光学和电学性质)的深刻理解也至关重要。尤其是,通过SAE嵌入在NW结构中的MQW的三维生长机理预计与在平面结构中或通过催化剂生长的MQW的三维生长机理不同,并且尚未进行深入研究。在这项工作中,我们揭示了通过SAE金属有机气相外延(MOVPE)技术生长的InGaAs / InP MQW NW的独特径向生长演变。我们观察到在纤锌矿(WZ)基-InP NW上轴向InGaAs QW生长引起的锌共混物(ZB)QW盘的形成,并提出将其作为驱动径向生长总体结构的关键因素。考虑到不同方面之间形成能的差异,ZB到WZ的变化在整体增长演变的驱动中的作用得到了增长形式主义的支持。尽管在MQW区域上具有ZB和WZ相混合的多型晶体结构,NW仍显示出较高的均匀性和理想的QW空间布局,且在〜1.3μm的光通信波长下具有明亮的室温光致发光,这对未来的发展有希望高效发光器件。
更新日期:2018-10-03
中文翻译:
选择性区域金属有机气相外延生长的InGaAs / InP多量子阱纳米线的径向生长演化
III–V半导体多量子阱纳米线(MQW NW)通过选择性区域外延(SAE)对于开发用于光通信,硅光子学和量子计算等应用的纳米级发光器件非常重要。为了获得高效的发光器件,不仅高质量的材料,而且对其生长机理和材料特性(结构,光学和电学性质)的深刻理解也至关重要。尤其是,通过SAE嵌入在NW结构中的MQW的三维生长机理预计与在平面结构中或通过催化剂生长的MQW的三维生长机理不同,并且尚未进行深入研究。在这项工作中,我们揭示了通过SAE金属有机气相外延(MOVPE)技术生长的InGaAs / InP MQW NW的独特径向生长演变。我们观察到在纤锌矿(WZ)基-InP NW上轴向InGaAs QW生长引起的锌共混物(ZB)QW盘的形成,并提出将其作为驱动径向生长总体结构的关键因素。考虑到不同方面之间形成能的差异,ZB到WZ的变化在整体增长演变的驱动中的作用得到了增长形式主义的支持。尽管在MQW区域上具有ZB和WZ相混合的多型晶体结构,NW仍显示出较高的均匀性和理想的QW空间布局,且在〜1.3μm的光通信波长下具有明亮的室温光致发光,这对未来的发展有希望高效发光器件。