当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Incorporating Graphitic Carbon Nitride (g‐C3N4) Quantum Dots into Bulk‐Heterojunction Polymer Solar Cells Leads to Efficiency Enhancement
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2016-02-08 , DOI: 10.1002/adfm.201505321 Xiang Chen 1 , Qing Liu 1 , Qiliang Wu 1 , Pingwu Du 1 , Jun Zhu 2 , Songyuan Dai 2 , Shangfeng Yang 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2016-02-08 , DOI: 10.1002/adfm.201505321 Xiang Chen 1 , Qing Liu 1 , Qiliang Wu 1 , Pingwu Du 1 , Jun Zhu 2 , Songyuan Dai 2 , Shangfeng Yang 1
Affiliation
Graphitic carbon nitride (g‐C3N4) has been commonly used as photocatalyst with promising applications in visible‐light photocatalytic water‐splitting. Rare studies are reported in applying g‐C3N4 in polymer solar cells. Here g‐C3N4 is applied in bulk heterojunction (BHJ) polymer solar cells (PSCs) for the first time by doping solution‐processable g‐C3N4 quantum dots (C3N4 QDs) in the active layer, leading to a dramatic efficiency enhancement. Upon C3N4 QDs doping, power conversion efficiencies (PCEs) of the inverted BHJ‐PSC devices based on different active layers including poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PC61BM), poly(4,8‐bis‐alkyloxybenzo(l,2‐b:4,5‐b′)dithiophene‐2,6‐diylalt‐(alkyl thieno(3,4‐b)thiophene‐2‐carboxylate)‐2,6‐diyl):[6,6]‐phenyl C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM), and poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐3‐fluorothieno [3,4‐b]thiophene‐2‐carboxylate] (PTB7‐Th):PC71BM reach 4.23%, 6.36%, and 9.18%, which are enhanced by ≈17.5%, 11.6%, and 11.8%, respectively, compared to that of the reference (undoped) devices. The PCE enhancement of the C3N4 QDs doped BHJ‐PSC device is found to be primarily attributed to the increase of short‐circuit current (Jsc), and this is confirmed by external quantum efficiency (EQE) measurements. The effects of C3N4 QDs on the surface morphology, optical absorption and photoluminescence (PL) properties of the active layer film as well as the charge transport property of the device are investigated, revealing that the efficiency enhancement of the BHJ‐PSC devices upon C3N4 QDs doping is due to the conjunct effects including the improved interfacial contact between the active layer and the hole transport layer due to the increase of the roughness of the active layer film, the facilitated photoinduced electron transfer from the conducting polymer donor to fullerene acceptor, the improved conductivity of the active layer, and the improved charge (hole and electron) transport.
中文翻译:
将块状氮化碳(g-C3N4)量子点掺入体-异质结聚合物太阳能电池中可提高效率
石墨碳氮化物(g-C 3 N 4)通常用作光催化剂,在可见光光催化水分解中具有广阔的应用前景。据报道,在聚合物太阳能电池中使用g‐C 3 N 4的研究很少。这里G-C 3 Ñ 4在体异质结(BHJ)聚合物太阳能电池(的PSC)通过掺杂溶液处理的G-C施加首次3 Ñ 4量子点(C 3 Ñ 4量子点)在有源层中,从而大大提高了效率。在C 3 N 4时基于不同的有源层的反向BHJ-PSC器件的QD掺杂,功率转换效率(PCE),包括聚(3-己基噻吩-2,5-二基):[6,6]-苯基-C61-丁酸甲酯( P3HT:PC 61 BM),聚(4,8-双烷氧基苯并(1,2-b:4,5-b')二噻吩-2,6-二胺基-(烷基噻吩(3,4-b)噻吩- 2-羧酸盐)-2,6-二基):[6,6]-苯基C 71丁酸甲酯(PBDTTT-C:PC 71 BM)和聚[4,8-bis(5-(2-乙基己基)噻吩-2-基苯并[1,2-b:4,5-b']二噻吩-co-3-氟噻吩并[3,4-b]噻吩-2-羧酸酯](PTB7-Th):PC 71 BM达到4.23%,6.36%和9.18%,与参考(未掺杂)设备相比分别提高了约17.5%,11.6%和11.8%。C 3 N的PCE增强发现掺杂了4个QD的BHJ-PSC器件主要归因于短路电流(J sc)的增加,这可以通过外部量子效率(EQE)测量得到证实。研究了C 3 N 4 QDs对有源层薄膜的表面形态,光吸收和光致发光(PL)性能以及器件的电荷传输性能的影响,揭示了BHJ-PSC器件的效率增强在C 3 N 4上 QDs掺杂归因于以下共同作用:由于活性层膜的粗糙度增加而导致活性层与空穴传输层之间的界面接触得到改善,光从电子的传导促进了从导电聚合物供体到富勒烯受体的转移。改善了有源层的导电性,并改善了电荷(空穴和电子)的传输。
更新日期:2016-02-08
中文翻译:
将块状氮化碳(g-C3N4)量子点掺入体-异质结聚合物太阳能电池中可提高效率
石墨碳氮化物(g-C 3 N 4)通常用作光催化剂,在可见光光催化水分解中具有广阔的应用前景。据报道,在聚合物太阳能电池中使用g‐C 3 N 4的研究很少。这里G-C 3 Ñ 4在体异质结(BHJ)聚合物太阳能电池(的PSC)通过掺杂溶液处理的G-C施加首次3 Ñ 4量子点(C 3 Ñ 4量子点)在有源层中,从而大大提高了效率。在C 3 N 4时基于不同的有源层的反向BHJ-PSC器件的QD掺杂,功率转换效率(PCE),包括聚(3-己基噻吩-2,5-二基):[6,6]-苯基-C61-丁酸甲酯( P3HT:PC 61 BM),聚(4,8-双烷氧基苯并(1,2-b:4,5-b')二噻吩-2,6-二胺基-(烷基噻吩(3,4-b)噻吩- 2-羧酸盐)-2,6-二基):[6,6]-苯基C 71丁酸甲酯(PBDTTT-C:PC 71 BM)和聚[4,8-bis(5-(2-乙基己基)噻吩-2-基苯并[1,2-b:4,5-b']二噻吩-co-3-氟噻吩并[3,4-b]噻吩-2-羧酸酯](PTB7-Th):PC 71 BM达到4.23%,6.36%和9.18%,与参考(未掺杂)设备相比分别提高了约17.5%,11.6%和11.8%。C 3 N的PCE增强发现掺杂了4个QD的BHJ-PSC器件主要归因于短路电流(J sc)的增加,这可以通过外部量子效率(EQE)测量得到证实。研究了C 3 N 4 QDs对有源层薄膜的表面形态,光吸收和光致发光(PL)性能以及器件的电荷传输性能的影响,揭示了BHJ-PSC器件的效率增强在C 3 N 4上 QDs掺杂归因于以下共同作用:由于活性层膜的粗糙度增加而导致活性层与空穴传输层之间的界面接触得到改善,光从电子的传导促进了从导电聚合物供体到富勒烯受体的转移。改善了有源层的导电性,并改善了电荷(空穴和电子)的传输。