当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fe–N–C Artificial Enzyme: Activation of Oxygen for Dehydrogenation and Monoxygenation of Organic Substrates under Mild Condition and Cancer Therapeutic Application
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-09-24 00:00:00 , DOI: 10.1021/acsami.8b15540 Fei He 1 , Li Mi 1 , Yanfei Shen 1 , Toshiyuki Mori 2 , Songqin Liu 1 , Yuanjian Zhang 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-09-24 00:00:00 , DOI: 10.1021/acsami.8b15540 Fei He 1 , Li Mi 1 , Yanfei Shen 1 , Toshiyuki Mori 2 , Songqin Liu 1 , Yuanjian Zhang 1
Affiliation
Developing highly efficient biomimetic catalysts that directly use O2 as the terminal oxidant to dehydrogenate and monoxygenate substrates with high selectivity under mild conditions has long been pursued but rarely achieved yet. Herein, we report that heterogeneous Fe–N–C, which is commonly used as an electrocatalyst for oxygen reduction reaction, had unusual biomimetic catalytic activity in both dehydrogenation and monoxygenation of a series of organic molecules (∼100% selectivity) by directly using O2. The Fe–Nx center was verified to be the active site that reductively activated O2 by spontaneously generating specific reactive oxygen species (ROS) (1O2, O2•–, and H2O2). Aided by these ROS, under physiological conditions, the Fe–N–C was further successfully exampled to kill proliferative lung cancer cells. Fe–N–C had several striking superior features with respect to natural enzymes, classical heterogeneous nanozymes, and homogeneous artificial enzymes incapable of working under harsh conditions (extreme pH and high temperature), ease of separation and recycling, and direct use of O2. It would open up a new vista of Fe–N–C as an artificial enzyme in biomimetic catalysis, ranging from fundamental simulation of oxidase/oxygenase metabolism to industrial oxidation processes and to disease treatment.
中文翻译:
Fe–N–C人工酶:轻度条件下有机基质的脱氢和单氧化作用的氧活化作用及癌症治疗应用
长期以来一直在研究开发直接使用O 2作为末端氧化剂在温和条件下以高选择性对底物进行脱氢和单加氧反应的高效仿生催化剂,但至今仍很少实现。在本文中,我们报道了常用作氧还原反应的电催化剂的非均相Fe–N–C在一系列有机分子的脱氢和单加氧中都具有直接通过O进行脱氢和单加氧的非常规仿生催化活性(〜100%选择性)。2。该Fe-N系列X中心被证明是活性位点的是还原活化ö 2通过自发生成特定的活性氧物种(ROS)(1 Ò 2,O- 2•–和H 2 O 2)。在生理条件下,借助这些ROS可以进一步成功地证明Fe–N–C可以杀死增殖性肺癌细胞。Fe–N–C在天然酶,经典异质纳米酶和均质人工酶等方面具有多种显着的卓越功能,它们无法在苛刻的条件下(极端的pH和高温)工作,易于分离和回收,并且直接使用O 2。这将在仿生催化中开辟一种新的Fe–N–C人工酶的前景,涵盖从氧化酶/加氧酶代谢的基本模拟到工业氧化过程以及疾病治疗的范围。
更新日期:2018-09-24
中文翻译:
Fe–N–C人工酶:轻度条件下有机基质的脱氢和单氧化作用的氧活化作用及癌症治疗应用
长期以来一直在研究开发直接使用O 2作为末端氧化剂在温和条件下以高选择性对底物进行脱氢和单加氧反应的高效仿生催化剂,但至今仍很少实现。在本文中,我们报道了常用作氧还原反应的电催化剂的非均相Fe–N–C在一系列有机分子的脱氢和单加氧中都具有直接通过O进行脱氢和单加氧的非常规仿生催化活性(〜100%选择性)。2。该Fe-N系列X中心被证明是活性位点的是还原活化ö 2通过自发生成特定的活性氧物种(ROS)(1 Ò 2,O- 2•–和H 2 O 2)。在生理条件下,借助这些ROS可以进一步成功地证明Fe–N–C可以杀死增殖性肺癌细胞。Fe–N–C在天然酶,经典异质纳米酶和均质人工酶等方面具有多种显着的卓越功能,它们无法在苛刻的条件下(极端的pH和高温)工作,易于分离和回收,并且直接使用O 2。这将在仿生催化中开辟一种新的Fe–N–C人工酶的前景,涵盖从氧化酶/加氧酶代谢的基本模拟到工业氧化过程以及疾病治疗的范围。