当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Essential Role of Spinel ZnFe2O4 Surfaces during Lithiation
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-09-19 00:00:00 , DOI: 10.1021/acsami.8b12869
Haoyue Guo , Amy C. Marschilok , Kenneth J. Takeuchi , Esther S. Takeuchi , Ping Liu

Spinel zinc ferrite (ZnFe2O4) is a well-known anode material in lithium ion batteries (LIBs) because of its large theoretical capacity. However, the high potentials observed at the initial stage of lithiation cannot be captured using a model of Li+ intercalation into the stoichiometric ZnFe2O4 bulk. Here, using density functional theory, we report for the first time that the ZnFe2O4 surfaces are responsible for the measured initial potentials. Among the three identified stable surfaces, ZnFeO2-terminated ZnFe2O4(1 1 0), O-terminated ZnFe2O4(1 1 1), and Zn-terminated ZnFe2O4(1 1 1), both (1 1 1) surfaces display higher lithiation potentials than the (1 1 0) surface, and the estimated potentials based on Zn-terminated (1 1 1) fit well with the experimental observations, whereas using the models based on ZnFe2O4(1 1 0) and previously ZnFe2O4 bulk, the estimated potentials are much lower. In terms of Li+ diffusion, the Zn-terminated ZnFe2O4(1 1 1) surface is the most active, where the energetically favorable saturation of Li+ on the surface is able to facilitate the process. Our results provide a new strategy for the design of LIB materials, via controlling the particle shape and the associated surface characteristics, thus enhancing the discharging performance.

中文翻译:

尖晶石ZnFe 2 O 4表面在锂化过程中的重要作用

尖晶石型铁氧体锌(ZnFe 2 O 4)由于其理论容量大,是锂离子电池(LIBs)中众所周知的阳极材料。但是,在锂化初始阶段观察到的高电势不能使用Li +嵌入化学计量的ZnFe 2 O 4主体中的模型来捕获。在这里,我们使用密度泛函理论首次报告了ZnFe 2 O 4表面负责所测量的初始电势。在三个确定的稳定表面中,ZnFeO 2终止的ZnFe 2 O 4(1 1 0),O终止的ZnFe 2 O 4(1 1 1)和以Zn为末端的ZnFe 2 O 4(1 1 1),两个(1 1 1)表面均显示出比(1 1 0)表面更高的锂化电位,并且基于Zn终止的( 1 1 1)与实验结果非常吻合,而使用基于ZnFe 2 O 4(1 1 0)和以前的ZnFe 2 O 4体积的模型,估计的电势要低得多。就Li +扩散而言,以Zn为末端的ZnFe 2 O 4(1 1 1)表面最活跃,其中Li +在能量上有利于饱和表面上能够促进该过程。我们的结果通过控制颗粒形状和相关的表面特性,为LIB材料的设计提供了新的策略,从而提高了放电性能。
更新日期:2018-09-19
down
wechat
bug