当前位置: X-MOL 学术J. Phys. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elimination of S Vacancy as the Cause for the n-Type Behavior of MoS2 from the First-Principles Perspective
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2018-09-19 00:00:00 , DOI: 10.1021/acs.jpclett.8b02591
Ming-Hui Shang 1, 2 , Huilin Hou 1 , Jinju Zheng 1 , Zuobao Yang 1 , Jing Zhang 3 , Shihao Wei 3 , Xiangmei Duan 3 , Weiyou Yang 1
Affiliation  

Molybdenum disulfide (2H-MoS2) based low-dimensional nanostructure materials have great potential for applications in electronic and optoelectronic devices. However, some of the properties such as the origin of the native n-type electrical conductivity (EC) observed in these materials still remain elusive. Here, the defect properties in the 2H-MoS2 bulk system are systematically investigated by first-principles calculation to address these issues. We find that the S vacancy VS with low formation energy cannot be the origin of n-type EC owing to its deep defect levels within the valence band region. All other donor defects such as antisite MoS or Mo interstitial MoI also have deep levels that can trap electrons leading to depressed EC. SMo and SI could be the origin of the p-type EC in 2H-MoS2, but the concentrations are expected to be rather low due to their high formation energies and can only be enhanced under S-rich/Mo-poor conditions. These results provide the underlying insights on the defect properties 2H-MoS2 and explain well the experimental observations.

中文翻译:

从第一性原理的观点来看,消除S空位是MoS 2 n型行为的原因

基于二硫化钼(2H-MoS 2)的低维纳米结构材料在电子和光电设备中具有巨大的应用潜力。但是,在这些材料中观察到的某些属性(例如原始n型电导率(EC)的起源)仍然难以捉摸。在这里,通过第一性原理计算系统地研究了2H-MoS 2本体系统中的缺陷性质,以解决这些问题。我们发现具有低形成能的S空位V S由于在价带区域内的深缺陷水平而不能成为n型EC的起源。所有其他供体缺陷,例如反位Mo S或Mo间质Mo I还具有很深的能级,可以捕获电子从而导致EC降低。S Mo和S I可能是2H-MoS 2中p型EC的起源,但是由于它们的高形成能,其浓度预计会很低,并且只能在富S / Mo贫的条件下才能提高。这些结果为缺陷性质2H-MoS 2提供了潜在的见解,并很好地解释了实验观察结果。
更新日期:2018-09-19
down
wechat
bug