当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Quantitative Description of the Vesicle Fusion Mechanism on Solid Surfaces and the Role of Cholesterol
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2018-09-28 , DOI: 10.1021/acs.jpcc.8b06566 Shiju Abraham 1 , Tabea Heckenthaler 1 , Dyuti Bandyopadhyay 1 , Yakov Morgenstern 1 , Yair Kaufman 1
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2018-09-28 , DOI: 10.1021/acs.jpcc.8b06566 Shiju Abraham 1 , Tabea Heckenthaler 1 , Dyuti Bandyopadhyay 1 , Yakov Morgenstern 1 , Yair Kaufman 1
Affiliation
Supported lipid bilayers on solid surfaces have promising potential for diverse applications, such as separation processes, biosensors, drug delivery, and more. However, the self-assembly of supported lipid bilayers via vesicle fusion—the commonly used preparation method for these lipid bilayers—is not fully understood. It is often found that lipid bilayers are patchy or exhibit holes/defects, which may hinder their applicability. Moreover, it is not fully understood whether these holes are transient, kinetically trapped, or thermodynamically stable (long-lasting). Here, we derived equations to quantitatively describe the mechanism of vesicle fusion on atomically smooth hydrophilic surfaces. The derived equations determine whether defectless lipid bilayers are thermodynamically stable/favorable and qualitatively predict the self-assembly rate. It is shown that vesicle fusion is governed by van der Waals and double layer interactions, as well as undulation repulsion between the lipid bilayers and the solid surface. Utilizing various experimental techniques, we confirmed the equation predictions by studying the self-assembly of lipid bilayers on silicon wafers using lipid mixtures that exhibited different electric potentials. Furthermore, we found that cholesterol increases the lipid bilayer resistivity—a crucial parameter for several applications—and the rate of self-assembly, by decreasing both the dielectric constant of the lipid bilayer and the undulation repulsion between the lipid bilayers and the solid surface. The derived equations can be used as quantitative guidelines for designing supported lipid structures on the surface, such as a layer of intact lipid vesicles, patchy or defectless lipid bilayers.
中文翻译:
固体表面囊泡融合机理的定量描述及胆固醇的作用
固体表面上支持的脂质双层具有广阔的潜力,可用于多种应用,例如分离过程,生物传感器,药物输送等。但是,尚不完全了解通过囊泡融合来支持脂质双分子层的自组装(这些脂质双分子层的常用制备方法)。经常发现脂质双层是不完整的或有孔洞/缺陷,这可能会阻碍其适用性。此外,尚未完全理解这些孔是瞬态的,动力学捕获的还是热力学稳定的(持久的)。在这里,我们导出方程式以定量描述原子光滑亲水表面上的囊泡融合机制。导出的方程式确定无缺陷的脂质双层是否在热力学上稳定/有利,以及定性地预测自组装率。结果表明,囊泡融合受范德华斯和双层相互作用以及脂质双层和固体表面之间的起伏排斥的支配。利用各种实验技术,我们通过使用具有不同电势的脂质混合物研究硅晶片上脂质双层的自组装,从而证实了方程式的预测。此外,我们发现胆固醇通过降低脂质双层的介电常数和脂质双层与固体表面之间的起伏排斥力,增加了脂质双层的电阻率(这是几种应用的关键参数)和自组装速率。导出的方程式可以用作定量指导,以设计表面上支持的脂质结构,
更新日期:2018-09-29
中文翻译:
固体表面囊泡融合机理的定量描述及胆固醇的作用
固体表面上支持的脂质双层具有广阔的潜力,可用于多种应用,例如分离过程,生物传感器,药物输送等。但是,尚不完全了解通过囊泡融合来支持脂质双分子层的自组装(这些脂质双分子层的常用制备方法)。经常发现脂质双层是不完整的或有孔洞/缺陷,这可能会阻碍其适用性。此外,尚未完全理解这些孔是瞬态的,动力学捕获的还是热力学稳定的(持久的)。在这里,我们导出方程式以定量描述原子光滑亲水表面上的囊泡融合机制。导出的方程式确定无缺陷的脂质双层是否在热力学上稳定/有利,以及定性地预测自组装率。结果表明,囊泡融合受范德华斯和双层相互作用以及脂质双层和固体表面之间的起伏排斥的支配。利用各种实验技术,我们通过使用具有不同电势的脂质混合物研究硅晶片上脂质双层的自组装,从而证实了方程式的预测。此外,我们发现胆固醇通过降低脂质双层的介电常数和脂质双层与固体表面之间的起伏排斥力,增加了脂质双层的电阻率(这是几种应用的关键参数)和自组装速率。导出的方程式可以用作定量指导,以设计表面上支持的脂质结构,