当前位置:
X-MOL 学术
›
Chem. Eur. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Porous Carbon Hosts for Lithium–Sulfur Batteries
Chemistry - A European Journal ( IF 3.9 ) Pub Date : 2018-12-18 , DOI: 10.1002/chem.201803153 Minya Wang 1 , Xinhui Xia 1 , Yu Zhong 1 , Jianbo Wu 2 , Ruochen Xu 1 , Zhujun Yao 1 , Donghuang Wang 1 , Wangjia Tang 1 , Xiuli Wang 1 , Jiangping Tu 1
Chemistry - A European Journal ( IF 3.9 ) Pub Date : 2018-12-18 , DOI: 10.1002/chem.201803153 Minya Wang 1 , Xinhui Xia 1 , Yu Zhong 1 , Jianbo Wu 2 , Ruochen Xu 1 , Zhujun Yao 1 , Donghuang Wang 1 , Wangjia Tang 1 , Xiuli Wang 1 , Jiangping Tu 1
Affiliation
Lithium–sulfur batteries (LSBs) are considered to be one of the most promising alternatives to the current lithium‐ion batteries (LIBs) to meet the increasing demand for energy storage owing to their high energy density, natural abundance, low cost, and environmental friendliness. Despite great success, LSBs still suffer from several problems, including undermined capacity arising from low utilization of sulfur, unsatisfactory rate performance and poor cycling life owing to the shuttle effect of polysulfides, and poor electrical conductivity of sulfur. Under such circumstances, the design/fabrication of porous carbon–sulfur composite cathodes is regarded as an effective solution to overcome the above problems. In this review, different synthetic methods of porous carbon hosts and their corresponding integration into carbon–sulfur cathodes are summarized. The pore formation mechanism of porous carbon hosts is also addressed. The pore size effect on electrochemical performance is highlighted and compared. The enhanced mechanism of the porous carbon host on the sulfur cathode is systematically reviewed and revealed. Finally, the combination of porous carbon hosts and high‐profile solid‐state electrolytes is demonstrated, and the challenges to realize large‐scale commercial application of porous carbon–sulfur cathodes is discussed and future trends are proposed.
中文翻译:
锂硫电池的多孔碳基质
锂硫电池(LSB)被认为是目前锂离子电池(LIB)的最有希望的替代品之一,由于其能量密度高,自然丰度高,成本低,环境友好等优点,可以满足不断增长的储能需求友善。尽管取得了巨大的成功,但LSB仍然存在一些问题,包括由于硫的利用率低,聚硫醚的穿梭效应而导致的容量不足,速率性能不理想以及循环寿命差以及硫的导电性差。在这种情况下,多孔碳硫复合阴极的设计/制造被认为是克服上述问题的有效解决方案。在这篇评论中,总结了多孔碳主体的不同合成方法及其与碳硫阴极的整合。还讨论了多孔碳主体的孔形成机理。孔尺寸对电化学性能的影响被突出并进行了比较。系统地审查和揭示了硫碳阴极上多孔碳主体的增强机理。最后,演示了多孔碳主体和高强度固态电解质的组合,并讨论了实现多孔碳-硫阴极大规模商业化应用所面临的挑战,并提出了未来的趋势。系统地审查和揭示了硫阴极上多孔碳主体的增强机理。最后,演示了多孔碳主体和高强度固态电解质的组合,并讨论了实现多孔碳-硫阴极大规模商业化应用所面临的挑战,并提出了未来的趋势。系统地审查和揭示了硫碳阴极上多孔碳主体的增强机理。最后,演示了多孔碳主体与高强度固态电解质的结合,并讨论了实现多孔碳硫磺阴极大规模商业化应用所面临的挑战,并提出了未来的趋势。
更新日期:2018-12-18
中文翻译:
锂硫电池的多孔碳基质
锂硫电池(LSB)被认为是目前锂离子电池(LIB)的最有希望的替代品之一,由于其能量密度高,自然丰度高,成本低,环境友好等优点,可以满足不断增长的储能需求友善。尽管取得了巨大的成功,但LSB仍然存在一些问题,包括由于硫的利用率低,聚硫醚的穿梭效应而导致的容量不足,速率性能不理想以及循环寿命差以及硫的导电性差。在这种情况下,多孔碳硫复合阴极的设计/制造被认为是克服上述问题的有效解决方案。在这篇评论中,总结了多孔碳主体的不同合成方法及其与碳硫阴极的整合。还讨论了多孔碳主体的孔形成机理。孔尺寸对电化学性能的影响被突出并进行了比较。系统地审查和揭示了硫碳阴极上多孔碳主体的增强机理。最后,演示了多孔碳主体和高强度固态电解质的组合,并讨论了实现多孔碳-硫阴极大规模商业化应用所面临的挑战,并提出了未来的趋势。系统地审查和揭示了硫阴极上多孔碳主体的增强机理。最后,演示了多孔碳主体和高强度固态电解质的组合,并讨论了实现多孔碳-硫阴极大规模商业化应用所面临的挑战,并提出了未来的趋势。系统地审查和揭示了硫碳阴极上多孔碳主体的增强机理。最后,演示了多孔碳主体与高强度固态电解质的结合,并讨论了实现多孔碳硫磺阴极大规模商业化应用所面临的挑战,并提出了未来的趋势。