当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanical and Functional Tradeoffs in Multiphase Liquid Metal, Solid Particle Soft Composites
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2018-09-04 , DOI: 10.1002/adfm.201804336
Ravi Tutika 1 , Shihuai H. Zhou 2 , Ralph E. Napolitano 3 , Michael D. Bartlett 1
Affiliation  

Soft materials with high thermal conductivity are critical for flexible electronics, energy storage and transfer, and human‐interface devices and robotics. However, fundamental heat transport limitations in soft and deformable materials present significant challenges for achieving high thermal conductivity. Here, a systematic study of soft composites with solid, liquid, and solid–liquid multiphase metal fillers dispersed in elastomers reveals key strategies to tune the thermal‐mechanical response of soft materials. Experiments supported by thermodynamic and kinetic modeling demonstrate that multiphase systems quickly form intermetallics that solidify and degrade mechanical response with modest gains in thermal conductivity. In contrast, liquid metal inclusions provide benefits over solid and multiphase fillers as they can be loaded up to 80% by volume with the composites being electrically insulating, soft (<1 MPa modulus), and highly thermally conductive (k = 6.7 ± 0.1 W m−1 K−1). The thermal‐mechanical response of the composites is summarized and quantitative design maps are presented for soft, highly thermally conductive materials. This leads to soft materials with unique thermal‐mechanical combinations, highlighted by a liquid metal composite with an unprecedented thermal conductivity of 11.0 ± 0.5 W m−1 K−1 when strained. These materials and approach enable diverse applications from soft conformal materials for stretchable electronics to thermal interface materials in integrated circuits.

中文翻译:

多相液态金属,固体颗粒软复合材料的机械和功能折衷

具有高导热性的软材料对于柔性电子,能量存储和传输以及人机界面设备和机器人技术至关重要。但是,软质和可变形材料的基本传热限制对实现高导热率提出了重大挑战。在这里,对分散在弹性体中的具有固体,液体和固液多相金属填料的软复合材料的系统研究表明,调节软材料的热机械响应的关键策略。热力学和动力学模型支持的实验表明,多相系统快速形成金属间化合物,该金属间化合物可固化并降低机械响应,并具有适度的热导率增加。相比之下,k = 6.7±0.1 W m -1 K -1)。总结了复合材料的热机械响应,并给出了柔软,高导热材料的定量设计图。这导致软材料具有独特的热机械组合,尤其是液态金属复合材料在应变时具有前所未有的热导率11.0±0.5 W m -1 K -1。这些材料和方法可实现多种应用,从用于可拉伸电子设备的软保形材料到集成电路中的热界面材料。
更新日期:2018-09-04
down
wechat
bug