当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring Sodium‐Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball‐Milling Method
Small ( IF 13.0 ) Pub Date : 2018-09-02 , DOI: 10.1002/smll.201802694
Haiyan Lu 1 , Fangxing Ai 2 , Yanlong Jia 1 , Chunyan Tang 3 , Xinhe Zhang 3 , Yunhui Huang 3 , Hanxi Yang 1 , Yuliang Cao 1
Affiliation  

Hard carbon is considered as one of the most promising anodes in sodium‐ion batteries due to its high capacity, low cost, and abundant resources. However, the available capacity and low initial Coulombic efficiency (ICE) limits the practical application of hard carbon anode. This issue results from the unclear understanding of the Na+ storage mechanism in hard carbon. In this work, a series of hard carbons with different microstructures are synthesized through an “up to down” approach by using a simple ball‐milling method to illustrate the sodium‐ion storage mechanism. The results demonstrate that ball‐milled hard carbon with more defects and smaller microcrystalline size shows less low‐potential‐plateau capacity and lower ICE, which provides further evidence to the “adsorption–insertion” mechanism. This work might give a new perspective to design hard carbon material with a proper structure for efficient sodium‐ion storage to develop high‐performance sodium‐ion batteries.

中文翻译:

球磨法制备不同显微结构的硬碳中钠离子的储存机理

硬碳由于其高容量,低成本和丰富的资源而被认为是钠离子电池中最有希望的阳极之一。然而,可用的容量和低的初始库仑效率(ICE)限制了硬碳阳极的实际应用。此问题是由于对Na +的了解不清而导致的硬碳的存储机制。在这项工作中,通过使用简单的球磨法来说明钠离子存储机理,通过“自上而下”的方法合成了一系列具有不同微观结构的硬碳。结果表明,球磨硬碳具有更多的缺陷和较小的微晶尺寸,显示出较低的低电位平台容量和较低的ICE,这为“吸附插入”机制提供了进一步的证据。这项工作可能会为设计具有适当结构的硬碳材料提供一个新的视角,以便有效地存储钠离子,从而开发出高性能的钠离子电池。
更新日期:2018-09-02
down
wechat
bug