Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2018-08-30 , DOI: 10.1016/j.apcatb.2018.08.073 Zhao Mo , Hui Xu , Zhigang Chen , Xiaojie She , Yanhua Song , Jiabiao Lian , Xingwang Zhu , Pengcheng Yan , Yucheng Lei , Shouqi Yuan , Huaming Li
Defect-Engineering is a promising way to introduce metal cation vacancies into target materials, thereby resulting in excellent performance for photocatalytic or electrocatalytic water splitting. Inspired by this, we propose an efficient Z-scheme system comprised of 2D MnO2/Monolayer g-C3N4 with defective Mn3+ active sites to realize overall water splitting. These defective Mn3+ active sites might boost H2O adsorption and optimize the interfacial charge separation/transfer in the photocatalytic process by introducing the Mn3+/Mn4+ redox couple. As a result, the composite displays an excellent and stable H2 and O2 evolution rates of 60.6 and 28.9 μmol g−1 h−1, respectively. Meanwhile, the H2 evolution rate is up to 28.0 mmol g−1 h−1 with apparent quantum efficiency of 23.33% at 420 nm in the H2 evolution half reaction. This study provides a new opportunity for constructing a Z-scheme overall water splitting system by exploiting the redox reactions of other metal cation vacancies.
中文翻译:
Z方案总水分解中具有Mn空位的MnO 2 /单层gC 3 N 4的构建
缺陷工程是一种将金属阳离子空位引入目标材料的有前途的方法,从而为光催化或电催化水分解提供了卓越的性能。受此启发,我们提出了一种由2D MnO 2 /单层gC 3 N 4组成的,具有缺陷Mn 3+活性位点的高效Z方案系统,以实现整体水分解。这些有缺陷的Mn 3+活性位点可以通过引入Mn 3+ / Mn 4+氧化还原对来增强H 2 O的吸附并优化光催化过程中的界面电荷分离/转移。结果,该复合材料显示出优异且稳定的H 2。O 2的释放速率分别为60.6和28.9μmolg -1 h -1。同时,在H 2析出半反应中,H 2析出速率高达28.0 mmol g -1 h -1,在420 nm处的表观量子效率为23.33%。这项研究为利用其他金属阳离子空位的氧化还原反应构建Z方案整体水分解系统提供了新的机会。