当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Visualizing Facet-Dependent Hydrogenation Dynamics in Individual Palladium Nanoparticles
Nano Letters ( IF 9.6 ) Pub Date : 2018-08-27 00:00:00 , DOI: 10.1021/acs.nanolett.8b00736
Katherine Sytwu 1 , Fariah Hayee 2 , Tarun C. Narayan 3 , Ai Leen Koh 4 , Robert Sinclair 3 , Jennifer A. Dionne 3
Affiliation  

Surface faceting in nanoparticles can profoundly impact the rate and selectivity of chemical transformations. However, the precise role of surface termination can be challenging to elucidate because many measurements are performed on ensembles of particles and do not have sufficient spatial resolution to observe reactions at the single and subparticle level. Here, we investigate solute intercalation in individual palladium hydride nanoparticles with distinct surface terminations. Using a combination of diffraction, electron energy loss spectroscopy, and dark-field contrast in an environmental transmission electron microscope (TEM), we compare the thermodynamics and directly visualize the kinetics of 40–70 nm {100}-terminated cubes and {111}-terminated octahedra with approximately 2 nm spatial resolution. Despite their distinct surface terminations, both particle morphologies nucleate the new phase at the tips of the particle. However, whereas the hydrogenated phase-front must rotate from [111] to [100] to propagate in cubes, the phase-front can propagate along the [100], [11̅0], and [111] directions in octahedra. Once the phase-front is established, the interface propagates linearly with time and is rate-limited by surface-to-subsurface diffusion and/or the atomic rearrangements needed to accommodate lattice strain. Following nucleation, both particle morphologies take approximately the same time to reach equilibrium, hydrogenating at similar pressures and without equilibrium phase coexistence. Our results highlight the importance of low-coordination number sites and strain, more so than surface faceting, in governing solute-driven reactions.

中文翻译:

可视化单个钯纳米粒子中依赖于面的加氢动力学

纳米颗粒的表面刻面会深刻影响化学转化的速率和选择性。但是,要阐明表面终止的确切作用可能是具有挑战性的,因为许多测量是对粒子集合执行的,并且没有足够的空间分辨率来观察单个粒子和亚粒子级别的反应。在这里,我们研究了具有不同表面终止作用的单个氢化钯纳米颗粒中的溶质嵌入。通过在环境透射电子显微镜(TEM)中结合使用衍射,电子能量损失光谱和暗场对比度,我们比较了热力学,并直接可视化了{100}封端的立方体和{111}的40–70 nm的动力学端接的八面体,空间分辨率约为2 nm。尽管表面有明显的终止,两种粒子形态都在粒子的尖端使新相成核。但是,氢化的相前必须从[111]旋转到[100]才能以立方体形式传播,而相前可以沿八面体的[100],[11̅0]和[111]方向传播。一旦建立了相前,该界面就会随时间线性传播,并受到表面间扩散和/或适应晶格应变所需的原子重排的速率限制。成核后,两种颗粒形态大约需要相同的时间才能达到平衡,在相似的压力下氢化并且没有平衡相共存。我们的结果强调了在控制溶质驱动的反应中,低配位数的位点和应变比表面刻面更重要。
更新日期:2018-08-27
down
wechat
bug