当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
FA0.88Cs0.12PbI3−x(PF6)x Interlayer Formed by Ion Exchange Reaction between Perovskite and Hole Transporting Layer for Improving Photovoltaic Performance and Stability
Advanced Materials ( IF 27.4 ) Pub Date : 2018-08-23 , DOI: 10.1002/adma.201801948 Jiangzhao Chen 1 , Seul-Gi Kim 1 , Nam-Gyu Park 1
Advanced Materials ( IF 27.4 ) Pub Date : 2018-08-23 , DOI: 10.1002/adma.201801948 Jiangzhao Chen 1 , Seul-Gi Kim 1 , Nam-Gyu Park 1
Affiliation
Interface engineering to form an interlayer via ion exchange reaction is reported. A FA0.88Cs0.12PbI3 formamidinium (FA) perovskite layer is first prepared, then FAPF6 solution with different concentrations is spin‐coated on top of the perovskite film, which leads to a partial substitution of iodide by PF6− ion. The second phase with nominal composition of FA0.88Cs0.12PbI3−x(PF6)x is grown at the grain boundary, which has island morphology and its size depends on the FAPF6 solution concentration. The lattice is expanded and bandgap is reduced due to inclusion of larger PF6− ions. The power conversion efficiency (PCE) is significantly enhanced from 17.8% to 19.3% as a consequence of improved fill factor and open‐circuit voltage (Voc). In addition, current–voltage hysteresis is reduced. Post‐treatment with FAPF6 reduces defect density and enhances carrier lifetime, which is responsible for the improved photovoltaic performance and reduced hysteresis. The unencapsulated device with post‐treated perovskite film demonstrates better stability than the pristine perovskite, where the initial PCE retains over 80% after 528 h exposure under relative humidity of around 50–70% in the dark and 92% after 360 h under one sun illumination.
中文翻译:
钙钛矿与空穴传输层之间通过离子交换反应形成的FA0.88Cs0.12PbI3−x(PF6)x中间层可提高光伏性能和稳定性
报道了通过离子交换反应形成中间层的界面工程。首先制备FA 0.88 Cs 0.12 PbI 3甲脒(FA)钙钛矿层,然后将不同浓度的FAPF 6溶液旋涂在钙钛矿薄膜的顶部,导致碘化物被PF 6 -离子部分取代。标称成分为FA 0.88 Cs 0.12 PbI 3− x (PF 6 ) x的第二相生长在晶界处,具有岛状形态,其尺寸取决于FAPF 6溶液浓度。由于包含较大的 PF 6 -离子,晶格扩大并且带隙减小。由于填充因子和开路电压 ( V oc ) 的提高,功率转换效率 (PCE) 从 17.8% 显着提高到 19.3%。此外,电流-电压滞后也减少了。使用 FAPF 6进行后处理可降低缺陷密度并延长载流子寿命,从而提高光伏性能并减少磁滞。具有后处理钙钛矿薄膜的未封装器件表现出比原始钙钛矿更好的稳定性,在黑暗中相对湿度约为 50-70% 的条件下暴露 528 小时后,初始 PCE 保持在 80% 以上,在一次阳光下暴露 360 小时后,初始 PCE 保持在 92% 以上。照明。
更新日期:2018-08-23
中文翻译:
钙钛矿与空穴传输层之间通过离子交换反应形成的FA0.88Cs0.12PbI3−x(PF6)x中间层可提高光伏性能和稳定性
报道了通过离子交换反应形成中间层的界面工程。首先制备FA 0.88 Cs 0.12 PbI 3甲脒(FA)钙钛矿层,然后将不同浓度的FAPF 6溶液旋涂在钙钛矿薄膜的顶部,导致碘化物被PF 6 -离子部分取代。标称成分为FA 0.88 Cs 0.12 PbI 3− x (PF 6 ) x的第二相生长在晶界处,具有岛状形态,其尺寸取决于FAPF 6溶液浓度。由于包含较大的 PF 6 -离子,晶格扩大并且带隙减小。由于填充因子和开路电压 ( V oc ) 的提高,功率转换效率 (PCE) 从 17.8% 显着提高到 19.3%。此外,电流-电压滞后也减少了。使用 FAPF 6进行后处理可降低缺陷密度并延长载流子寿命,从而提高光伏性能并减少磁滞。具有后处理钙钛矿薄膜的未封装器件表现出比原始钙钛矿更好的稳定性,在黑暗中相对湿度约为 50-70% 的条件下暴露 528 小时后,初始 PCE 保持在 80% 以上,在一次阳光下暴露 360 小时后,初始 PCE 保持在 92% 以上。照明。