当前位置:
X-MOL 学术
›
Chem. Eur. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Room‐Temperature Ionic‐Liquid‐Assisted Microwave Preparation of Tunable Photoluminescent Copper‐Indium‐Zinc‐Sulfide Quantum Dots
Chemistry - A European Journal ( IF 3.9 ) Pub Date : 2018-10-01 , DOI: 10.1002/chem.201803548 Ting Chen 1 , Yanqiao Xu 1 , Lianjun Wang 1, 2 , Weihui Jiang 1 , Wan Jiang 1, 2 , Zhixiang Xie 1
Chemistry - A European Journal ( IF 3.9 ) Pub Date : 2018-10-01 , DOI: 10.1002/chem.201803548 Ting Chen 1 , Yanqiao Xu 1 , Lianjun Wang 1, 2 , Weihui Jiang 1 , Wan Jiang 1, 2 , Zhixiang Xie 1
Affiliation
A facile approach towards photoluminescent (PL) Cu‐In‐Zn‐S quantum dots (CIZS QDs) has been developed, comprising microwave treatment with the assist of room‐temperature ionic liquid (RTIL). Because of its high polarizability, RTIL served as a microwave absorbent, which resulted in the increase of the instantaneous nucleation rate and the rapid synthesis of CIZS QDs at low temperature. Moreover, the surface decoration of QDs with RTIL can passivate the surface defects greatly. The PL intensity of the CIZS QDs depends on the anion species, alkyl chain length of the RTIL, and the metal element ratios of the QDs. On the basis of the variable PL peak position and extended luminescence lifetime of the CIZS QDs, the superior emission behavior of the QDs was confirmed by surface etching with fluoride produced by the hydrolysis of RTIL 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([Bmim]BF4). Moreover, the intermediate alkyl chain length of the RTIL can avoid aggregation, which results in the construction of CIZS QDs with homogenous size distribution. The shape‐controlled CIZS QDs show a broadened tunable emission peak from 677 to 579 nm compared with that of QDs prepared by a conventional one‐pot method by mixing the raw materials. CIZS QDs also exhibit a high quantum yield (QY) of 24.1 % after coating with a ZnS shell. This method is expected to be a useful technique for the rapid synthesis of multiple QDs with a wider range of emission wavelengths and higher QY for a variety of applications.
中文翻译:
室温离子液体辅助微波制备可调光致发光的铜铟锌硫化物量子点
已经开发出一种简便的方法来处理光致发光(PL)Cu-In-Zn-S量子点(CIZS QDs),包括在室温离子液体(RTIL)的辅助下进行微波处理。由于其高极化率,RTIL用作微波吸收剂,从而导致瞬时成核速率的提高和低温下CIZS QD的快速合成。此外,采用RTIL的量子点表面装饰可以极大地钝化表面缺陷。CIZS QD的PL强度取决于阴离子种类,RTIL的烷基链长以及QD的金属元素比率。根据CIZS QD的可变PL峰位置和延长的发光寿命,4)。此外,RTIL的中间烷基链长度可以避免聚集,从而可以构建具有均一尺寸分布的CIZS QD。与通过传统的一锅法混合原料制备的量子点相比,形状控制的CIZS量子点在677 nm至579 nm范围内具有可调的发射峰。CIZS量子点在涂覆ZnS壳后也显示出24.1%的高量子产率(QY)。该方法有望成为快速合成具有多种发射波长范围和较高QY的多个QD的有用技术。
更新日期:2018-10-01
中文翻译:
室温离子液体辅助微波制备可调光致发光的铜铟锌硫化物量子点
已经开发出一种简便的方法来处理光致发光(PL)Cu-In-Zn-S量子点(CIZS QDs),包括在室温离子液体(RTIL)的辅助下进行微波处理。由于其高极化率,RTIL用作微波吸收剂,从而导致瞬时成核速率的提高和低温下CIZS QD的快速合成。此外,采用RTIL的量子点表面装饰可以极大地钝化表面缺陷。CIZS QD的PL强度取决于阴离子种类,RTIL的烷基链长以及QD的金属元素比率。根据CIZS QD的可变PL峰位置和延长的发光寿命,4)。此外,RTIL的中间烷基链长度可以避免聚集,从而可以构建具有均一尺寸分布的CIZS QD。与通过传统的一锅法混合原料制备的量子点相比,形状控制的CIZS量子点在677 nm至579 nm范围内具有可调的发射峰。CIZS量子点在涂覆ZnS壳后也显示出24.1%的高量子产率(QY)。该方法有望成为快速合成具有多种发射波长范围和较高QY的多个QD的有用技术。