Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Conduction Band Fine Structure in Colloidal HgTe Quantum Dots
ACS Nano ( IF 15.8 ) Pub Date : 2018-08-20 00:00:00 , DOI: 10.1021/acsnano.8b04539 Margaret H. Hudson , Menglu Chen , Vladislav Kamysbayev , Eric M. Janke , Xinzheng Lan , Guy Allan 1 , Christophe Delerue 1 , Byeongdu Lee , Philippe Guyot-Sionnest , Dmitri V. Talapin
ACS Nano ( IF 15.8 ) Pub Date : 2018-08-20 00:00:00 , DOI: 10.1021/acsnano.8b04539 Margaret H. Hudson , Menglu Chen , Vladislav Kamysbayev , Eric M. Janke , Xinzheng Lan , Guy Allan 1 , Christophe Delerue 1 , Byeongdu Lee , Philippe Guyot-Sionnest , Dmitri V. Talapin
Affiliation
HgTe colloidal quantum dots (QDs) are of interest because quantum confinement of semimetallic bulk HgTe allows one to synthetically control the bandgap throughout the infrared. Here, we synthesize highly monodisperse HgTe QDs and tune their doping both chemically and electrochemically. The monodispersity of the QDs was evaluated using small-angle X-ray scattering (SAXS) and suggests a diameter distribution of ∼10% across multiple batches of different sizes. Electron-doped HgTe QDs display an intraband absorbance and bleaching of the first two excitonic features. We see splitting of the intraband peaks corresponding to electronic transitions from the occupied 1Se state to a series of nondegenerate 1Pe states. Spectroelectrochemical studies reveal that the degree of splitting and relative intensity of the intraband features remain constant across doping levels up to two electrons per QD. Theoretical modeling suggests that the splitting of the 1Pe level arises from spin–orbit coupling and reduced QD symmetry. The fine structure of the intraband transitions is observed in the ensemble studies due to the size uniformity of the as-synthesized QDs and strong spin–orbit coupling inherent to HgTe.
中文翻译:
HgTe胶体量子点中的导带精细结构
HgTe胶体量子点(QDs)是令人感兴趣的,因为半金属本体HgTe的量子限制使人们可以合成地控制整个红外带隙。在这里,我们合成了高度单分散的HgTe QD,并在化学和电化学方面对其掺杂进行了调整。使用小角度X射线散射(SAXS)评估了量子点的单分散性,并表明在多批不同大小的批次中直径分布约为10%。电子掺杂的HgTe量子点显示出前两个激子特性的带内吸收和漂白。我们看到对应于从占据1S e状态到一系列非简并1P e的电子跃迁的带内峰分裂状态。光谱电化学研究表明,在每个QD最多两个电子的掺杂水平上,带内特征的分裂程度和相对强度保持恒定。理论模型表明,1P e能级的分裂是由于自旋轨道耦合和降低的QD对称性引起的。由于合成QD的尺寸均匀性和HgTe固有的强自旋轨道耦合,在集成研究中观察到了带内过渡的精细结构。
更新日期:2018-08-20
中文翻译:
HgTe胶体量子点中的导带精细结构
HgTe胶体量子点(QDs)是令人感兴趣的,因为半金属本体HgTe的量子限制使人们可以合成地控制整个红外带隙。在这里,我们合成了高度单分散的HgTe QD,并在化学和电化学方面对其掺杂进行了调整。使用小角度X射线散射(SAXS)评估了量子点的单分散性,并表明在多批不同大小的批次中直径分布约为10%。电子掺杂的HgTe量子点显示出前两个激子特性的带内吸收和漂白。我们看到对应于从占据1S e状态到一系列非简并1P e的电子跃迁的带内峰分裂状态。光谱电化学研究表明,在每个QD最多两个电子的掺杂水平上,带内特征的分裂程度和相对强度保持恒定。理论模型表明,1P e能级的分裂是由于自旋轨道耦合和降低的QD对称性引起的。由于合成QD的尺寸均匀性和HgTe固有的强自旋轨道耦合,在集成研究中观察到了带内过渡的精细结构。