当前位置:
X-MOL 学术
›
Chem. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A DNA nanowire based localized catalytic hairpin assembly reaction for microRNA imaging in live cells†
Chemical Science ( IF 7.6 ) Pub Date : 2018-08-20 00:00:00 , DOI: 10.1039/c8sc02943a Qiaomei Wei 1 , Jin Huang 1 , Jing Li 1 , Jiaoli Wang 1 , Xiaohai Yang 1 , Jianbo Liu 1 , Kemin Wang 1
Chemical Science ( IF 7.6 ) Pub Date : 2018-08-20 00:00:00 , DOI: 10.1039/c8sc02943a Qiaomei Wei 1 , Jin Huang 1 , Jing Li 1 , Jiaoli Wang 1 , Xiaohai Yang 1 , Jianbo Liu 1 , Kemin Wang 1
Affiliation
Here, we have developed a localized catalytic hairpin assembly (LCHA) strategy for intracellular miR-21 imaging by using DNA nanowires confining both hairpin probes in a compact space. The LCHA is constructed by interval hybridization of DNA hairpin probe pairs to a DNA nanowire with multiplex footholds generated by alternating chain hybridization. Compared to the conventional catalytic hairpin assembly (CHA) strategy, the LCHA significantly shortens the reaction time and enhances the sensitivity. Moreover, the proposed LCHA can serve as a carrier for delivery of probes into live cells as well as protect the probes from nuclease degradation and enhances the stability. We anticipate that this design can be widely applied in facilitating basic biomedical research and disease diagnosis.
中文翻译:
基于 DNA 纳米线的局部催化发夹组装反应,用于活细胞中的 microRNA 成像†
在这里,我们通过使用 DNA 纳米线将两个发夹探针限制在紧凑的空间中,开发了一种用于细胞内 miR-21 成像的局部催化发夹组装 (LCHA) 策略。 LCHA 是通过 DNA 发夹探针对与 DNA 纳米线的间隔杂交构建的,该 DNA 纳米线具有由交替链杂交产生的多重立足点。与传统的催化发夹组装(CHA)策略相比,LCHA显着缩短了反应时间并提高了灵敏度。此外,所提出的LCHA可以作为将探针递送到活细胞中的载体,并保护探针免受核酸酶降解并增强稳定性。我们预计这种设计可以广泛应用于促进基础生物医学研究和疾病诊断。
更新日期:2018-08-20
中文翻译:
基于 DNA 纳米线的局部催化发夹组装反应,用于活细胞中的 microRNA 成像†
在这里,我们通过使用 DNA 纳米线将两个发夹探针限制在紧凑的空间中,开发了一种用于细胞内 miR-21 成像的局部催化发夹组装 (LCHA) 策略。 LCHA 是通过 DNA 发夹探针对与 DNA 纳米线的间隔杂交构建的,该 DNA 纳米线具有由交替链杂交产生的多重立足点。与传统的催化发夹组装(CHA)策略相比,LCHA显着缩短了反应时间并提高了灵敏度。此外,所提出的LCHA可以作为将探针递送到活细胞中的载体,并保护探针免受核酸酶降解并增强稳定性。我们预计这种设计可以广泛应用于促进基础生物医学研究和疾病诊断。