当前位置:
X-MOL 学术
›
J. Phys. Chem. B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microviscosity in E. coli Cells from Time-Resolved Linear Dichroism Measurements
The Journal of Physical Chemistry B ( IF 2.8 ) Pub Date : 2018-08-29 , DOI: 10.1021/acs.jpcb.8b07362 Eefei Chen 1 , Raymond M. Esquerra 2 , Philipp A. Meléndez 2 , Sita S. Chandrasekaran 2 , David S. Kliger 1
The Journal of Physical Chemistry B ( IF 2.8 ) Pub Date : 2018-08-29 , DOI: 10.1021/acs.jpcb.8b07362 Eefei Chen 1 , Raymond M. Esquerra 2 , Philipp A. Meléndez 2 , Sita S. Chandrasekaran 2 , David S. Kliger 1
Affiliation
A protein’s folding or function depends on its mobility through the viscous environment that is defined by the presence of macromolecules throughout the cell. The relevant parameter for this mobility is microviscosity—the viscosity on a time and distance scale that is important for protein folding/function movements. A quasi-null, ultrasensitive time-resolved linear dichroism (TRLD) spectroscopy is proving to be a useful tool for measurements of viscosity on this scale, with previous in vitro studies reporting on the microviscosities of crowded environments mimicked by high concentrations of different macromolecules. This study reports the microviscosity experienced by myoglobin in the E. coli cell’s heterogeneous cytoplasm by using TRLD to measure rotational diffusion times. The results show that photolyzed deoxyMb ensembles randomize through environment-dependent rotational diffusion with a lifetime of 34 ± 6 ns. This value corresponds to a microviscosity of 2.82 ± 0.42 cP, which is consistent with previous reports of cytoplasmic viscosity in E. coli. The results of these TRLD studies in E. coli (1) provide a measurement of myoglobin mobility in the cytoplasm, (2) taken together with in vitro TRLD studies yield new insights into the nature of the cytoplasmic environment in cells, and (3) demonstrate the feasibility of TRLD as a probe of intracellular viscosity.
中文翻译:
时间分辨线性二色性测量在大肠杆菌细胞中的微粘度
蛋白质的折叠或功能取决于其在粘性环境中的流动性,粘性环境由整个细胞中大分子的存在来定义。这种迁移率的相关参数是微粘度-在时间和距离尺度上的粘度,对于蛋白质折叠/功能运动很重要。准零点,超灵敏的时间分辨线性二色性(TRLD)光谱已被证明是测量此规模粘度的有用工具,先前的体外研究报道了拥挤环境的微粘度,这些环境被高浓度的不同大分子模拟。这项研究报告了肌红蛋白在大肠杆菌中所经历的微粘度通过使用TRLD测量旋转扩散时间,可以检测细胞的异质细胞质。结果表明,光解脱氧Mb团通过环境依赖性旋转扩散随机化,寿命为34±6 ns。该值对应于2.82±0.42cP的微粘度,这与先前关于大肠杆菌中细胞质粘度的报道一致。这些在大肠杆菌中进行TRLD研究的结果(1)提供了对肌红蛋白在细胞质中迁移率的测量;(2)与体外TRLD研究一起获得了对细胞中细胞质环境性质的新见解,以及(3)证明TRLD作为细胞内粘度探针的可行性。
更新日期:2018-11-29
中文翻译:
时间分辨线性二色性测量在大肠杆菌细胞中的微粘度
蛋白质的折叠或功能取决于其在粘性环境中的流动性,粘性环境由整个细胞中大分子的存在来定义。这种迁移率的相关参数是微粘度-在时间和距离尺度上的粘度,对于蛋白质折叠/功能运动很重要。准零点,超灵敏的时间分辨线性二色性(TRLD)光谱已被证明是测量此规模粘度的有用工具,先前的体外研究报道了拥挤环境的微粘度,这些环境被高浓度的不同大分子模拟。这项研究报告了肌红蛋白在大肠杆菌中所经历的微粘度通过使用TRLD测量旋转扩散时间,可以检测细胞的异质细胞质。结果表明,光解脱氧Mb团通过环境依赖性旋转扩散随机化,寿命为34±6 ns。该值对应于2.82±0.42cP的微粘度,这与先前关于大肠杆菌中细胞质粘度的报道一致。这些在大肠杆菌中进行TRLD研究的结果(1)提供了对肌红蛋白在细胞质中迁移率的测量;(2)与体外TRLD研究一起获得了对细胞中细胞质环境性质的新见解,以及(3)证明TRLD作为细胞内粘度探针的可行性。