当前位置:
X-MOL 学术
›
J. Phys. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mass Spectrometric Study on the Combustion of Tetramethylsilane and the Formation of Silicon Oxide Clusters in Premixed Laminar Low-Pressure Synthesis Flames
The Journal of Physical Chemistry A ( IF 2.7 ) Pub Date : 2018-08-16 00:00:00 , DOI: 10.1021/acs.jpca.8b06510 Y. Karakaya 1 , S. Peukert 2 , T. Kasper 1
The Journal of Physical Chemistry A ( IF 2.7 ) Pub Date : 2018-08-16 00:00:00 , DOI: 10.1021/acs.jpca.8b06510 Y. Karakaya 1 , S. Peukert 2 , T. Kasper 1
Affiliation
This work investigates the decomposition of tetramethylsilane and the formation of silicon oxide clusters in a laminar premixed low-pressure hydrogen flame using molecular-beam mass spectrometry (MBMS). A comprehensive list of the species that exist in the gas phase was compiled and spatially resolved mole fraction profiles of species in the flame were obtained. Quantitative data in dependence of height above the burner were obtained for all major species and intermediates. The MBMS detection technique allowed to monitor Si–C–O–H, and Si–O–H-containing compounds as well as C1–C2 species. The measured data show that the reaction of tetramethylsilane is initiated by H-abstraction from a methyl group and subsequent formation of oxygenated species. The measurements suggest that combustion of tetramethylsilane in a hydrogen flame proceeds mainly by a stepwise substitution of the methyl ligands by hydroxyl groups. Molecular and radical intermediates like Si(CH3)2OH, Si(OH)3, and Si(OH)4 are formed in the reaction zone. Significant amounts of Si(OH)4 are present at large distances above the burner. A repetitive growth pattern suggests that the monomer Si(OH)4 is a likely species initiating the formation and growth of larger silicon oxide clusters, e.g., Si4O10H4, Si5O12H4, and Si6O14H4, that can form nanoparticles in subsequent reactions.
中文翻译:
预混合层流低压合成火焰中四甲基硅烷燃烧和氧化硅团簇形成的质谱研究
这项工作使用分子束质谱(MBMS)研究了层流预混合低压氢火焰中四甲基硅烷的分解和氧化硅簇的形成。汇编了气相中存在的物种的完整列表,并获得了火焰中物种的空间分辨摩尔分数分布图。对于所有主要种类和中间体,均获得了与燃烧器上方高度相关的定量数据。MBMS检测技术可以监测Si–OC–H,含Si–OH–H的化合物以及C 1 –C 2物种。实测数据表明,四甲基硅烷的反应是通过从甲基中吸氢并随后形成氧化物种而引发的。测量表明,氢火焰中四甲基硅烷的燃烧主要通过甲基配体被羟基逐步取代而进行。在反应区中形成诸如Si(CH 3)2 OH,Si(OH)3和Si(OH)4的分子和自由基中间体。在燃烧器上方较远的距离处存在大量的Si(OH)4。重复的生长模式表明,单体Si(OH)4是引发较大的氧化硅团簇(例如Si)的形成和生长的可能物种。4 O 10 H 4,Si 5 O 12 H 4和Si 6 O 14 H 4可以在随后的反应中形成纳米颗粒。
更新日期:2018-08-16
中文翻译:
预混合层流低压合成火焰中四甲基硅烷燃烧和氧化硅团簇形成的质谱研究
这项工作使用分子束质谱(MBMS)研究了层流预混合低压氢火焰中四甲基硅烷的分解和氧化硅簇的形成。汇编了气相中存在的物种的完整列表,并获得了火焰中物种的空间分辨摩尔分数分布图。对于所有主要种类和中间体,均获得了与燃烧器上方高度相关的定量数据。MBMS检测技术可以监测Si–OC–H,含Si–OH–H的化合物以及C 1 –C 2物种。实测数据表明,四甲基硅烷的反应是通过从甲基中吸氢并随后形成氧化物种而引发的。测量表明,氢火焰中四甲基硅烷的燃烧主要通过甲基配体被羟基逐步取代而进行。在反应区中形成诸如Si(CH 3)2 OH,Si(OH)3和Si(OH)4的分子和自由基中间体。在燃烧器上方较远的距离处存在大量的Si(OH)4。重复的生长模式表明,单体Si(OH)4是引发较大的氧化硅团簇(例如Si)的形成和生长的可能物种。4 O 10 H 4,Si 5 O 12 H 4和Si 6 O 14 H 4可以在随后的反应中形成纳米颗粒。