当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Intracation and Interanion–Cation Charge-Transfer Properties of Tetrathiafulvalene-Bismuth-Halide Hybrids
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2018-08-14 00:00:00 , DOI: 10.1021/acs.inorgchem.8b01692 Xuan Zhang 1 , Ping Zhang 1 , Yi-Gang Weng 1 , Zheng-Zhen Tang 1 , Qin-Yu Zhu 1 , Jie Dai 1
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2018-08-14 00:00:00 , DOI: 10.1021/acs.inorgchem.8b01692 Xuan Zhang 1 , Ping Zhang 1 , Yi-Gang Weng 1 , Zheng-Zhen Tang 1 , Qin-Yu Zhu 1 , Jie Dai 1
Affiliation
Tetrathiafulvalene (TTF) derivatives as promising hole transport materials in assembling hybrid halide perovskite solar cells have attracted great attention; however, electron transfer or charge-transfer (CT) between TTF and metal halides has been studied with less detail at the molecular level. Using molecular models, we herein report four new TTF-bismuth-halides assembled by methylated or protonated bis(4′-pyridyl)-tetrathiafulvalene cations, (MePy)2TTF or (HPy)2TTF, and bismuth-halide anions. Single crystal analysis showed that the cations are stacked to form a TTF column, and the bismuth-halide anions are inlaid between the TTF columns with anion–cation interactions. In these compounds, the main contribution to CT is the intracation CT, namely intramolecular CT (IMCT) from TTF moiety to pyridinium group. However, the anion to cation CT (ACCT) has a significant effect on the IMCT and physical properties. The different anion–cation interaction modes result in different synergistic effects of IMCT and ACCT, which modified the band gaps and photocurrent properties of the hybrids. The research gives a clear image of structure–property relationship and provides a perspective on the design of new perovskite materials at the molecular level.
中文翻译:
四硫富瓦烯-卤化铋杂化物的内位和阴离子阳离子转移性质
在组装混合卤化物钙钛矿太阳能电池中,四硫富瓦烯(TTF)衍生物作为有前景的空穴传输材料受到了广泛关注。但是,已经研究了在TTF和金属卤化物之间的电子转移或电荷转移(CT),在分子水平上的细节较少。使用分子模型,我们在这里报告了由甲基化或质子化的双(4'-吡啶基)-四硫富瓦烯阳离子(MePy)2 TTF或(HPy)2组装的四个新的TTF-卤化铋。TTF和卤化铋阴离子。单晶分析表明,阳离子堆叠形成一个TTF色谱柱,卤化铋阴离子以阴离子与阳离子的相互作用嵌入TTF色谱柱之间。在这些化合物中,对CT的主要贡献是阳离子内CT,即从TTF部分到吡啶鎓基团的分子内CT(IMCT)。但是,阳离子阳离子CT(ACCT)阴离子对IMCT和物理性质有重大影响。不同的阴离子-阳离子相互作用模式导致IMCT和ACCT的协同效应不同,从而改变了杂化物的带隙和光电流特性。该研究给出了结构与性质之间关系的清晰图像,并为在分子水平上新型钙钛矿材料的设计提供了一个视角。
更新日期:2018-08-14
中文翻译:
四硫富瓦烯-卤化铋杂化物的内位和阴离子阳离子转移性质
在组装混合卤化物钙钛矿太阳能电池中,四硫富瓦烯(TTF)衍生物作为有前景的空穴传输材料受到了广泛关注。但是,已经研究了在TTF和金属卤化物之间的电子转移或电荷转移(CT),在分子水平上的细节较少。使用分子模型,我们在这里报告了由甲基化或质子化的双(4'-吡啶基)-四硫富瓦烯阳离子(MePy)2 TTF或(HPy)2组装的四个新的TTF-卤化铋。TTF和卤化铋阴离子。单晶分析表明,阳离子堆叠形成一个TTF色谱柱,卤化铋阴离子以阴离子与阳离子的相互作用嵌入TTF色谱柱之间。在这些化合物中,对CT的主要贡献是阳离子内CT,即从TTF部分到吡啶鎓基团的分子内CT(IMCT)。但是,阳离子阳离子CT(ACCT)阴离子对IMCT和物理性质有重大影响。不同的阴离子-阳离子相互作用模式导致IMCT和ACCT的协同效应不同,从而改变了杂化物的带隙和光电流特性。该研究给出了结构与性质之间关系的清晰图像,并为在分子水平上新型钙钛矿材料的设计提供了一个视角。