当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cobalt–Cobalt Phosphide Nanoparticles@Nitrogen‐Phosphorus Doped Carbon/Graphene Derived from Cobalt Ions Adsorbed Saccharomycete Yeasts as an Efficient, Stable, and Large‐Current‐Density Electrode for Hydrogen Evolution Reactions
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2018-08-12 , DOI: 10.1002/adfm.201801332 Guixiang Li 1 , Jiayuan Yu 1 , Jin Jia 1 , Linjing Yang 1 , Lili Zhao 1, 2 , Weijia Zhou 1 , Hong Liu 2, 3
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2018-08-12 , DOI: 10.1002/adfm.201801332 Guixiang Li 1 , Jiayuan Yu 1 , Jin Jia 1 , Linjing Yang 1 , Lili Zhao 1, 2 , Weijia Zhou 1 , Hong Liu 2, 3
Affiliation
Development of electrocatalysts for hydrogen evolution reaction (HER) with low overpotential and robust stability remains as one of the most serious challenges for energy conversion. Herein, a serviceable and highly active HER electrocatalyst with multilevel porous structure (Co‐Co2P nanoparticles@N, P doped carbon/reduced graphene oxides (Co‐Co2P@NPC/rGO)) is synthesized by Saccharomycete cells as template to adsorb metal ions and graphene nanosheets as separating agent to prevent aggregation, which is composed of Co‐Co2P nanoparticles with size of ≈104.7 nm embedded into carbonized Saccharomycete cells. The Saccharomycete cells provide not only carbon source to produce carbon shells, but also phosphorus source to prepare metal phosphides. In order to realize the practicability and permanent stability, the binderless and 3D electrodes composed of obtained Co‐Co2P@NPC/rGO powder are constructed, which possess a low overpotential of 61.5 mV (achieve 10 mA cm−2) and the high current density with extraordinary catalytic stability (1000 mA cm−2 for 20 h) in 0.5 m H2SO4. The preparation process is appropriate for synthesizing various metal or metal phosphide@carbon electrocatalysts. This work may provide a biological template method for rational design and fabrication of various metals or metal compounds@carbon 3D electrodes with promising applications in energy conversion and storage.
中文翻译:
从钴离子吸附的酵母菌中提取的钴-磷化磷纳米粒子@氮-磷掺杂的碳/石墨烯,是一种高效,稳定且大电流密度的氢发生反应电极
具有低的超电势和稳定的稳定性的用于氢析出反应(HER)的电催化剂的开发仍然是能量转换的最严峻挑战之一。在此,以酵母菌细胞为模板合成具有多级多孔结构(Co-Co 2 P纳米粒子@ N,P掺杂碳/还原石墨烯氧化物(Co-Co 2 P @ NPC / rGO))的可维修且高活性的HER电催化剂。吸附金属离子和石墨烯纳米片作为分离剂以防止聚集,聚集体由嵌入到碳化酵母菌细胞中的大小约为104.7 nm的Co-Co 2 P纳米颗粒组成。该酵母菌电解池不仅提供产生碳壳的碳源,而且提供制备金属磷化物的磷源。为了实现实用性和永久稳定性,构建了由获得的Co-Co 2 P @ NPC / rGO粉末组成的无粘合剂和3D电极,其低电势为61.5 mV(达到10 mA cm -2),并且高在0.5 m H 2 SO 4中具有非凡的催化稳定性(1000 mA cm -2持续20 h)的电流密度。该制备方法适合于合成各种金属或金属磷化物@碳电催化剂。这项工作可以为合理设计和制造各种金属或金属化合物@碳3D电极提供一种生物模板方法,并在能量转换和存储方面具有广阔的应用前景。
更新日期:2018-08-12
中文翻译:
从钴离子吸附的酵母菌中提取的钴-磷化磷纳米粒子@氮-磷掺杂的碳/石墨烯,是一种高效,稳定且大电流密度的氢发生反应电极
具有低的超电势和稳定的稳定性的用于氢析出反应(HER)的电催化剂的开发仍然是能量转换的最严峻挑战之一。在此,以酵母菌细胞为模板合成具有多级多孔结构(Co-Co 2 P纳米粒子@ N,P掺杂碳/还原石墨烯氧化物(Co-Co 2 P @ NPC / rGO))的可维修且高活性的HER电催化剂。吸附金属离子和石墨烯纳米片作为分离剂以防止聚集,聚集体由嵌入到碳化酵母菌细胞中的大小约为104.7 nm的Co-Co 2 P纳米颗粒组成。该酵母菌电解池不仅提供产生碳壳的碳源,而且提供制备金属磷化物的磷源。为了实现实用性和永久稳定性,构建了由获得的Co-Co 2 P @ NPC / rGO粉末组成的无粘合剂和3D电极,其低电势为61.5 mV(达到10 mA cm -2),并且高在0.5 m H 2 SO 4中具有非凡的催化稳定性(1000 mA cm -2持续20 h)的电流密度。该制备方法适合于合成各种金属或金属磷化物@碳电催化剂。这项工作可以为合理设计和制造各种金属或金属化合物@碳3D电极提供一种生物模板方法,并在能量转换和存储方面具有广阔的应用前景。