当前位置:
X-MOL 学术
›
ACS Photonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication
ACS Photonics ( IF 6.5 ) Pub Date : 2018-08-03 00:00:00 , DOI: 10.1021/acsphotonics.8b00680
Juncheng Fang 1 , Zhenwei Xie 1, 2 , Ting Lei 1 , Changjun Min 1 , Luping Du 1 , Zhaohui Li 3 , Xiaocong Yuan 1
ACS Photonics ( IF 6.5 ) Pub Date : 2018-08-03 00:00:00 , DOI: 10.1021/acsphotonics.8b00680
Juncheng Fang 1 , Zhenwei Xie 1, 2 , Ting Lei 1 , Changjun Min 1 , Luping Du 1 , Zhaohui Li 3 , Xiaocong Yuan 1
Affiliation
![]() |
Given by the Shannon theorem, the data rate in a single mode fiber is approaching the capacity limit of 100 Tbit/s, which even applies to all existing wavelength division multiplexing and advanced modulation formatting techniques. Optical vortex beams, including orbital angular momentum (OAM) beams with phase singularities and cylindrical vector beams (CVBs) with polarization singularities, are orthogonally structured light beams providing new degrees of freedom for multiplexing optical communication, for which the multiplexer is the key component. Although there are various OAM detection approaches such as the optical geometric transformation and vortex grating, CVB sorting with high efficiency and large dynamic range has not been demonstrated before. In this work, we propose and demonstrate an efficient approach for multiple coaxial CVB sorting based on the spin-dependent optical geometric transformation using the Pancharatnam–Berry optical element device fabricated with the photoaligned liquid crystal. We demonstrate a CVB multiplexing communication system in both free space and few-mode optical fiber. The CVB sorter is compatible with wavelength division multiplexing and shows the potential to further increase the communication capacity by 1–2 orders of magnitude.
中文翻译:
圆柱矢量束多路复用通信的自旋相关光学几何变换
由Shannon定理给出,单模光纤中的数据速率接近100 Tbit / s的容量限制,甚至适用于所有现有的波分复用和高级调制格式化技术。光学涡旋光束,包括具有相位奇异性的轨道角动量(OAM)光束和具有偏振奇异性的圆柱矢量光束(CVB),是正交结构的光束,为复用光通信提供了新的自由度,而复用器是其中的关键组件。尽管有各种OAM检测方法,例如光学几何变换和涡旋光栅,但以前尚未证明具有高效率和大动态范围的CVB分选。在这项工作中,我们提出并演示了一种有效的方法,该方法使用与光取向液晶一起制造的Pancharatnam–Berry光学元件设备,基于自旋相关的光学几何变换,对多种同轴CVB分选。我们演示了在自由空间和少模光纤中的CVB多路复用通信系统。CVB分选器与波分复用兼容,并显示出将通信容量进一步提高1-2个数量级的潜力。
更新日期:2018-08-03
中文翻译:

圆柱矢量束多路复用通信的自旋相关光学几何变换
由Shannon定理给出,单模光纤中的数据速率接近100 Tbit / s的容量限制,甚至适用于所有现有的波分复用和高级调制格式化技术。光学涡旋光束,包括具有相位奇异性的轨道角动量(OAM)光束和具有偏振奇异性的圆柱矢量光束(CVB),是正交结构的光束,为复用光通信提供了新的自由度,而复用器是其中的关键组件。尽管有各种OAM检测方法,例如光学几何变换和涡旋光栅,但以前尚未证明具有高效率和大动态范围的CVB分选。在这项工作中,我们提出并演示了一种有效的方法,该方法使用与光取向液晶一起制造的Pancharatnam–Berry光学元件设备,基于自旋相关的光学几何变换,对多种同轴CVB分选。我们演示了在自由空间和少模光纤中的CVB多路复用通信系统。CVB分选器与波分复用兼容,并显示出将通信容量进一步提高1-2个数量级的潜力。