当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Vacuum Ultraviolet Light-Generating Metasurface
Nano Letters ( IF 9.6 ) Pub Date : 2018-08-01 00:00:00 , DOI: 10.1021/acs.nanolett.8b02346 Michael Semmlinger,Ming Lun Tseng,Jian Yang,Ming Zhang,Chao Zhang,Wei-Yi Tsai,Din Ping Tsai,Peter Nordlander,Naomi J. Halas
Nano Letters ( IF 9.6 ) Pub Date : 2018-08-01 00:00:00 , DOI: 10.1021/acs.nanolett.8b02346 Michael Semmlinger,Ming Lun Tseng,Jian Yang,Ming Zhang,Chao Zhang,Wei-Yi Tsai,Din Ping Tsai,Peter Nordlander,Naomi J. Halas
Vacuum ultraviolet (VUV) light has important applications in many fields, ranging from device fabrication to photochemistry, from environmental remediation to microscopy and spectroscopy. Methods to produce coherent VUV light frequently utilize high harmonic generation in media such as rare gases or atomic vapors; nonlinear optical crystals that support second harmonic generation into the VUV are quite rare. Here, we demonstrate an all-dielectric metasurface designed for the nonlinear optical generation of VUV light. Consisting of an array of zinc oxide nanoresonators, the device exhibits a magnetic dipole resonance at a wavelength of 394 nm. When excited with ultrafast laser pulses at this wavelength, the second harmonic at 197 nm is readily generated. Manipulation of the metasurface design enables control over the radiation pattern. This work has the potential to open the door toward simple and compact VUV sources for new applications.
中文翻译:
真空紫外线产生超颖表面
真空紫外(VUV)光在从设备制造到光化学,从环境修复到显微镜和光谱学的许多领域中都有重要的应用。产生相干VUV光的方法经常利用稀有气体或原子蒸气等介质中的高次谐波产生。支持二次谐波进入VUV的非线性光学晶体非常罕见。在这里,我们演示了为VUV光的非线性光学生成而设计的全介电超表面。该装置由氧化锌纳米谐振器阵列组成,在394 nm波长处表现出磁偶极子谐振。当用该波长的超快激光脉冲激发时,很容易产生197 nm的二次谐波。超表面设计的操纵使得能够控制辐射图。
更新日期:2018-08-01
中文翻译:
真空紫外线产生超颖表面
真空紫外(VUV)光在从设备制造到光化学,从环境修复到显微镜和光谱学的许多领域中都有重要的应用。产生相干VUV光的方法经常利用稀有气体或原子蒸气等介质中的高次谐波产生。支持二次谐波进入VUV的非线性光学晶体非常罕见。在这里,我们演示了为VUV光的非线性光学生成而设计的全介电超表面。该装置由氧化锌纳米谐振器阵列组成,在394 nm波长处表现出磁偶极子谐振。当用该波长的超快激光脉冲激发时,很容易产生197 nm的二次谐波。超表面设计的操纵使得能够控制辐射图。