当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Graphene Modified Electro-Fenton Catalytic Membrane for in Situ Degradation of Antibiotic Florfenicol
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2018-08-16 , DOI: 10.1021/acs.est.8b01894 Wen-Li Jiang 1, 2 , Xue Xia 1 , Jing-Long Han 1, 2 , Yang-Cheng Ding 1, 2 , Muhammad Rizwan Haider 1, 2 , Ai-Jie Wang 1, 2, 3
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2018-08-16 , DOI: 10.1021/acs.est.8b01894 Wen-Li Jiang 1, 2 , Xue Xia 1 , Jing-Long Han 1, 2 , Yang-Cheng Ding 1, 2 , Muhammad Rizwan Haider 1, 2 , Ai-Jie Wang 1, 2, 3
Affiliation
The removal of low-concentration antibiotics from water to alleviate the potential threat of antibiotic-resistant bacteria and genes calls for the development of advanced treatment technologies with high efficiency. In this study, a novel graphene modified electro-Fenton (e-Fenton) catalytic membrane (EFCM) was fabricated for in situ degradation of low-concentration antibiotic florfenicol. The removal efficiency was 90%, much higher than that of electrochemical filtration (50%) and single filtration process (27%). This demonstrated that EFCM acted not only as a cathode for e-Fenton oxidation process in a continuous mode but also as a membrane barrier to concentrate and enhance the mass transfer of florfenicol, which increased its oxidation chances. The removal rate of florfenicol by EFCM was much higher (10.2 ± 0.1 mg m–2 h–1) than single filtration (2.5 ± 0.1 mg m–2 h–1) or batch e-Fenton processes (4.3 ± 0.05 mg m–2 h–1). Long-term operation and fouling experiment further demonstrated the durability and antifouling property of EFCM. Four main degradation pathways of florfenicol were proposed by tracking the degradation byproducts. The above results highlighted the feasibility of this integrated membrane catalysis process for advanced water purification.
中文翻译:
石墨烯修饰的电芬顿催化膜原位降解抗生素氟苯尼考
从水中去除低浓度抗生素以减轻抗生素抗性细菌和基因的潜在威胁,要求开发高效的先进治疗技术。在这项研究中,一种新型的石墨烯修饰的电子芬顿(e-Fenton)催化膜(EFCM)用于低浓度抗生素氟苯尼考的原位降解。去除效率为90%,远高于电化学过滤(50%)和单过滤工艺(27%)。这表明EFCM不仅以连续模式充当电子芬顿氧化过程的阴极,而且还作为浓缩和增强氟苯尼考传质的膜屏障,从而增加了其氧化机会。EFCM对氟苯尼考的去除率更高(10.2±0.1 mg m –2h –1)比单过滤(2.5±0.1 mg m –2 h –1)或分批e-Fenton工艺(4.3±0.05 mg m –2 h –1)高。长期运行和结垢实验进一步证明了EFCM的耐久性和防污性能。通过跟踪降解副产物,提出了氟苯尼考的四种主要降解途径。以上结果凸显了该集成膜催化工艺用于高级水净化的可行性。
更新日期:2018-08-17
中文翻译:
石墨烯修饰的电芬顿催化膜原位降解抗生素氟苯尼考
从水中去除低浓度抗生素以减轻抗生素抗性细菌和基因的潜在威胁,要求开发高效的先进治疗技术。在这项研究中,一种新型的石墨烯修饰的电子芬顿(e-Fenton)催化膜(EFCM)用于低浓度抗生素氟苯尼考的原位降解。去除效率为90%,远高于电化学过滤(50%)和单过滤工艺(27%)。这表明EFCM不仅以连续模式充当电子芬顿氧化过程的阴极,而且还作为浓缩和增强氟苯尼考传质的膜屏障,从而增加了其氧化机会。EFCM对氟苯尼考的去除率更高(10.2±0.1 mg m –2h –1)比单过滤(2.5±0.1 mg m –2 h –1)或分批e-Fenton工艺(4.3±0.05 mg m –2 h –1)高。长期运行和结垢实验进一步证明了EFCM的耐久性和防污性能。通过跟踪降解副产物,提出了氟苯尼考的四种主要降解途径。以上结果凸显了该集成膜催化工艺用于高级水净化的可行性。