Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Simultaneous Suppression of the Dendrite Formation and Shuttle Effect in a Lithium–Sulfur Battery by Bilateral Solid Electrolyte Interface
Advanced Science ( IF 14.3 ) Pub Date : 2018-07-23 , DOI: 10.1002/advs.201700934
Ling Fan 1 , Suhua Chen 1 , Jingyi Zhu 2, 3 , Ruifang Ma 1 , Shuping Li 4 , Ramakrishna Podila 2 , Apparao M Rao 2 , Gongzheng Yang 5 , Chengxin Wang 5 , Qian Liu 1 , Zhi Xu 6, 7 , Lixia Yuan 4 , Yunhui Huang 4 , Bingan Lu 1, 6, 7
Advanced Science ( IF 14.3 ) Pub Date : 2018-07-23 , DOI: 10.1002/advs.201700934
Ling Fan 1 , Suhua Chen 1 , Jingyi Zhu 2, 3 , Ruifang Ma 1 , Shuping Li 4 , Ramakrishna Podila 2 , Apparao M Rao 2 , Gongzheng Yang 5 , Chengxin Wang 5 , Qian Liu 1 , Zhi Xu 6, 7 , Lixia Yuan 4 , Yunhui Huang 4 , Bingan Lu 1, 6, 7
Affiliation
![]() |
Although the reversible and inexpensive energy storage characteristics of the lithium–sulfur (Li‐S) battery have made it a promising candidate for electrical energy storage, the dendrite growth (anode) and shuttle effect (cathode) hinder its practical application. Here, it is shown that new electrolytes for Li‐S batteries promote the simultaneous formation of bilateral solid electrolyte interfaces on the sulfur‐host cathode and lithium anode, thus effectively suppressing the shuttle effect and dendrite growth. These high‐capacity Li‐S batteries with new electrolytes exhibit a long‐term cycling stability, ultrafast‐charge/slow‐discharge rates, super‐low self‐discharge performance, and a capacity retention of 94.9% even after a 130 d long storage. Importantly, the long cycle stability of these industrial grade high‐capacity Li‐S pouch cells with new electrolytes will provide the basis for creating robust energy dense Li‐S batteries with an extensive life cycle.
中文翻译:
双边固体电解质界面同时抑制锂硫电池中枝晶形成和穿梭效应
尽管锂硫(Li-S)电池的可逆且廉价的储能特性使其成为电能存储的有前途的候选者,但枝晶生长(阳极)和穿梭效应(阴极)阻碍了其实际应用。研究表明,用于锂硫电池的新型电解质促进了硫主体正极和锂负极上双侧固体电解质界面的同时形成,从而有效抑制了穿梭效应和枝晶生长。这些采用新型电解质的高容量锂硫电池表现出长期循环稳定性、超快充电/慢放电速率、超低自放电性能,即使在长期储存130天后容量保持率为94.9% 。重要的是,这些采用新型电解质的工业级高容量锂硫软包电池的长循环稳定性将为创建具有较长生命周期的强大能量密集型锂硫电池奠定基础。
更新日期:2018-07-23
中文翻译:
![](https://scdn.x-mol.com/jcss/images/paperTranslation.png)
双边固体电解质界面同时抑制锂硫电池中枝晶形成和穿梭效应
尽管锂硫(Li-S)电池的可逆且廉价的储能特性使其成为电能存储的有前途的候选者,但枝晶生长(阳极)和穿梭效应(阴极)阻碍了其实际应用。研究表明,用于锂硫电池的新型电解质促进了硫主体正极和锂负极上双侧固体电解质界面的同时形成,从而有效抑制了穿梭效应和枝晶生长。这些采用新型电解质的高容量锂硫电池表现出长期循环稳定性、超快充电/慢放电速率、超低自放电性能,即使在长期储存130天后容量保持率为94.9% 。重要的是,这些采用新型电解质的工业级高容量锂硫软包电池的长循环稳定性将为创建具有较长生命周期的强大能量密集型锂硫电池奠定基础。