当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transparent, Adhesive, and Conductive Hydrogel for Soft Bioelectronics Based on Light-Transmitting Polydopamine-Doped Polypyrrole Nanofibrils
Chemistry of Materials ( IF 7.2 ) Pub Date : 2018-07-23 00:00:00 , DOI: 10.1021/acs.chemmater.8b01446 Lu Han 1 , Liwei Yan 1 , Menghao Wang 1 , Kefeng Wang 2 , Liming Fang 3 , Jie Zhou 1 , Ju Fang 4 , Fuzeng Ren 4 , Xiong Lu 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2018-07-23 00:00:00 , DOI: 10.1021/acs.chemmater.8b01446 Lu Han 1 , Liwei Yan 1 , Menghao Wang 1 , Kefeng Wang 2 , Liming Fang 3 , Jie Zhou 1 , Ju Fang 4 , Fuzeng Ren 4 , Xiong Lu 1
Affiliation
Conductive hydrogels are promising materials for soft electronic devices. To satisfy the diverse requirement of bioelectronic devices, especially those for human–machine interfaces, hydrogels are required to be transparent, conductive, highly stretchable, and skin-adhesive. However, fabrication of a conductive-polymer-incorporated hydrogel with high performance is a challenge because of the hydrophobic nature of conductive polymers making processing difficult. Here, we report a transparent, conductive, stretchable, and self-adhesive hydrogel by in situ formation of polydopamine (PDA)-doped polypyrrole (PPy) nanofibrils in the polymer network. The in situ formed nanofibrils with good hydrophilicity were well-integrated with the hydrophilic polymer phase and interwoven into a nanomesh, which created a complete conductive path and allowed visible light to pass through for transparency. Catechol groups from the PDA–PPy nanofibrils imparted the hydrogel with self-adhesiveness. Reinforcement by the nanofibrils made the hydrogel tough and stretchable. The proposed simple and smart strategy of in situ formation of conductive nanofillers opens a new route to incorporate hydrophobic and undissolvable conductive polymers into hydrogels. The fabricated multifunctional hydrogel shows promise in a range of applications, such as transparent electronic skins, wound dressings, and bioelectrodes for see-through body-adhered signal detection.
中文翻译:
基于透光聚多巴胺掺杂的聚吡咯纳米纤丝的用于软生物电子学的透明,粘合和导电水凝胶
导电水凝胶是用于软电子设备的有前途的材料。为了满足生物电子设备(尤其是用于人机界面的生物电子设备)的各种要求,水凝胶必须是透明的,导电的,高度可拉伸的和具有皮肤粘合性的。然而,由于导电聚合物的疏水性使得加工困难,因此制造具有高性能的掺有导电聚合物的水凝胶是一个挑战。在这里,我们报告了通过在聚合物网络中原位形成掺杂聚多巴胺(PDA)的聚吡咯(PPy)纳米原纤维形成的透明,导电,可拉伸和自粘水凝胶。将具有良好亲水性的原位形成的纳米原纤维与亲水性聚合物相很好地整合在一起,并交织成纳米网,它创造了一条完整的导电路径,并允许可见光通过以提高透明度。PDA-PPy纳米原纤维中的邻苯二酚基团赋予水凝胶自粘性。纳米原纤维的增强使水凝胶坚韧且可拉伸。所提出的简单而智能的导电纳米填料原位形成策略为将疏水和不可溶的导电聚合物掺入水凝胶开辟了一条新途径。制成的多功能水凝胶在一系列应用中显示出希望,例如透明电子皮肤,伤口敷料和用于透明的人体粘附信号检测的生物电极。所提出的简单而智能的导电纳米填料原位形成策略为将疏水和不可溶的导电聚合物掺入水凝胶开辟了一条新途径。制成的多功能水凝胶在一系列应用中显示出希望,例如透明电子皮肤,伤口敷料和用于透明的人体粘附信号检测的生物电极。所提出的简单而智能的导电纳米填料原位形成策略为将疏水和不可溶的导电聚合物掺入水凝胶开辟了一条新途径。制成的多功能水凝胶在一系列应用中显示出希望,例如透明电子皮肤,伤口敷料和用于透明的人体粘附信号检测的生物电极。
更新日期:2018-07-23
中文翻译:
基于透光聚多巴胺掺杂的聚吡咯纳米纤丝的用于软生物电子学的透明,粘合和导电水凝胶
导电水凝胶是用于软电子设备的有前途的材料。为了满足生物电子设备(尤其是用于人机界面的生物电子设备)的各种要求,水凝胶必须是透明的,导电的,高度可拉伸的和具有皮肤粘合性的。然而,由于导电聚合物的疏水性使得加工困难,因此制造具有高性能的掺有导电聚合物的水凝胶是一个挑战。在这里,我们报告了通过在聚合物网络中原位形成掺杂聚多巴胺(PDA)的聚吡咯(PPy)纳米原纤维形成的透明,导电,可拉伸和自粘水凝胶。将具有良好亲水性的原位形成的纳米原纤维与亲水性聚合物相很好地整合在一起,并交织成纳米网,它创造了一条完整的导电路径,并允许可见光通过以提高透明度。PDA-PPy纳米原纤维中的邻苯二酚基团赋予水凝胶自粘性。纳米原纤维的增强使水凝胶坚韧且可拉伸。所提出的简单而智能的导电纳米填料原位形成策略为将疏水和不可溶的导电聚合物掺入水凝胶开辟了一条新途径。制成的多功能水凝胶在一系列应用中显示出希望,例如透明电子皮肤,伤口敷料和用于透明的人体粘附信号检测的生物电极。所提出的简单而智能的导电纳米填料原位形成策略为将疏水和不可溶的导电聚合物掺入水凝胶开辟了一条新途径。制成的多功能水凝胶在一系列应用中显示出希望,例如透明电子皮肤,伤口敷料和用于透明的人体粘附信号检测的生物电极。所提出的简单而智能的导电纳米填料原位形成策略为将疏水和不可溶的导电聚合物掺入水凝胶开辟了一条新途径。制成的多功能水凝胶在一系列应用中显示出希望,例如透明电子皮肤,伤口敷料和用于透明的人体粘附信号检测的生物电极。