当前位置: X-MOL 学术Macromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single Component Polymerization of Diisocyanoacetates toward Polyimidazoles
Macromolecules ( IF 5.1 ) Pub Date : 2018-07-20 00:00:00 , DOI: 10.1021/acs.macromol.8b01179
Tianyu Cheng 1 , Yizhao Chen 1 , Anjun Qin 1 , Ben Zhong Tang 1, 2
Affiliation  

The polymerization of triple-bond building blocks will generate functional polymers owing to their unsaturated backbones, which facilitate the electron delocation within the main chains. Currently, the research focus in this area is the alkyne-based polymerization, and the carbon–nitrogen triple-bond based polymerization to produce stable nitrogen-containing polymers is rarely reported. In this paper, a new polymerization of diisocyanoacetate was successfully established. The silver acetate-catalyzed polymerization of diisocyanoacetate in the acetonitrile or DMF readily produced soluble polyimidazoles with high molecular weights (Mw up to 32500) in excellent yields (up to 94%) at room temperature after 2 h. Moreover, this polymerization performed in a single component fashion, which shows remarkable advantages over the traditional two- or multicomponent ones. In addition, the resultant polyimidazoles could be postfunctionalized to yield ionized polyelectrolytes and could feature the aggregation-induced emission (AIE) characteristics by incorporation of an AIE-active tetraphenylethene moiety in its polymer chains. This single component polymerization will become a powerful tool for the preparation of polyimidazoles and be potentially applicable in materials and biological fields.

中文翻译:

二异氰基乙酸酯向聚咪唑的单组分聚合

三键结构单元的聚合将由于其不饱和主链而产生功能性聚合物,从而有助于电子在主链中的沉积。目前,该领域的研究重点是基于炔烃的聚合反应,而很少有人报道基于碳-氮三键的聚合反应来生产稳定的含氮聚合物。本文成功建立了一种新的二异氰基乙酸酯聚合。乙腈或DMF中乙酸银催化的二异氰基乙酸酯聚合容易产生高分子量(M w2小时后,在室温下可获得高达32500的高收率(高达94%)。而且,该聚合以单组分的方式进行,与传统的二组分或多组分的聚合方法相比,显示出显着的优势。另外,所得的聚咪唑可以被后官能化以产生离子化的聚电解质,并且可以通过在其聚合物链中引入AIE活性四苯基乙烯部分而具有聚集诱导的发射(AIE)特征。这种单组分聚合将成为制备聚咪唑的有力工具,并有可能应用于材料和生物领域。
更新日期:2018-07-20
down
wechat
bug