当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mechanism and Kinetics of Ethanol Coupling to Butanol over Hydroxyapatite
ACS Catalysis ( IF 11.3 ) Pub Date : 2016-01-08 00:00:00 , DOI: 10.1021/acscatal.5b02672
Christopher R. Ho 1, 2 , Sankaranarayanapillai Shylesh 1 , Alexis T. Bell 1, 2
ACS Catalysis ( IF 11.3 ) Pub Date : 2016-01-08 00:00:00 , DOI: 10.1021/acscatal.5b02672
Christopher R. Ho 1, 2 , Sankaranarayanapillai Shylesh 1 , Alexis T. Bell 1, 2
Affiliation
![]() |
The mechanism and kinetics for ethanol coupling to n-butanol over hydroxyapatite (HAP) were investigated at 573–613 K. In situ titration experiments show that the active sites for acetaldehyde and butanol formation are different. In combination with FTIR studies, it was found that ethanol dehydrogenation is catalyzed by Ca–O sites, whereas condensation of acetaldehyde is catalyzed by CaO/PO43– pairs. Measurements of the reaction kinetics at various ethanol (3.5–9.4 kPa) and acetaldehyde (0.055–0.12 kPa) partial pressures reveal that direct condensation involving two ethanol molecules does not play a significant role in butanol formation; instead, n-butanol is formed via a Guerbet pathway. At a constant acetaldehyde pressure, enolate formation is rate-limiting, and ethanol inhibits acetaldehyde condensation rates by competitive adsorption. A model of the reaction kinetics consistent with all experimental observations is developed.
中文翻译:
羟基磷灰石上乙醇与丁醇的偶联机理和动力学
在573–613 K上研究了乙醇通过羟基磷灰石(HAP)与正丁醇偶联的机理和动力学。原位滴定实验表明,乙醛和丁醇形成的活性位点不同。结合FTIR研究,发现乙醇脱氢是由Ca–O位催化的,而乙醛的缩合是由CaO / PO 4 3–对催化的。在各种乙醇(3.5–9.4 kPa)和乙醛(0.055–0.12 kPa)分压下的反应动力学测量结果表明,涉及两个乙醇分子的直接缩合在丁醇的形成中不发挥重要作用。相反,nβ-丁醇是通过Guerbet途径形成的。在恒定的乙醛压力下,烯醇化物的形成受到速率的限制,乙醇通过竞争性吸附抑制乙醛的缩合速率。建立了与所有实验观察结果一致的反应动力学模型。
更新日期:2016-01-08
中文翻译:

羟基磷灰石上乙醇与丁醇的偶联机理和动力学
在573–613 K上研究了乙醇通过羟基磷灰石(HAP)与正丁醇偶联的机理和动力学。原位滴定实验表明,乙醛和丁醇形成的活性位点不同。结合FTIR研究,发现乙醇脱氢是由Ca–O位催化的,而乙醛的缩合是由CaO / PO 4 3–对催化的。在各种乙醇(3.5–9.4 kPa)和乙醛(0.055–0.12 kPa)分压下的反应动力学测量结果表明,涉及两个乙醇分子的直接缩合在丁醇的形成中不发挥重要作用。相反,nβ-丁醇是通过Guerbet途径形成的。在恒定的乙醛压力下,烯醇化物的形成受到速率的限制,乙醇通过竞争性吸附抑制乙醛的缩合速率。建立了与所有实验观察结果一致的反应动力学模型。