Energy Storage Materials ( IF 18.9 ) Pub Date : 2018-07-10 , DOI: 10.1016/j.ensm.2018.07.006 Hong Zhang , Xuanhe Hu , Yi Zhang , Shuangyin Wang , Fei Xin , Xudong Chen , Dingshan Yu
Lithium-sulfur (Li-S) batteries with traditional PVDF binders suffer from low active material utilization, poor cycling stability and low sulfur loading, which remarkably hinders their practical application. To address these issues once for all, we developed a three-in-one multifunctional binder based on three-dimensional (3D)-crosslinked tannic acid (TA)/poly(ethylene oxide) (PEO) complex, wherein TA can drastically enhance the stability of PEO in electrolyte solution. As-designed TA/PEO binder integrates multiple functions in one material: (1) greatly retard the shuttle effect, (2) effectively maintain cathodes integrity, (3) improve lithium ions transfer capacity, yet this point is often ignored in many existing binders. Benefiting from the above merits, even with a simple sulfur/carbon composite as cathode materials as a proof-of-concept, the assembled Li-S batteries using the TA/PEO binder present a discharge capacity of 476.7 mA h g−1 over 1000 cycles at 0.2 C, much higher than that with the PVDF binder (only 30 mA h g−1). The corresponding capacity fade is approximately 0.03%, superior to most reported binders. Even at a high sulfur loading of 5.0 mg cm−2, the cell delivers a capacity retention of 74.5% over 150 cycles. Additionally, the cathode preparation using our TA/PEO binder is an aqueous process, making it particularly promising for large-scale manufacturing.
中文翻译:
3D交联单宁酸/聚环氧乙烷复合物,作为三合一多功能粘合剂,用于锂硫电池中的高硫负载和高稳定性阴极
具有传统PVDF粘合剂的锂-硫(Li-S)电池的活性材料利用率低,循环稳定性差和硫负荷低,这严重阻碍了其实际应用。为彻底解决这些问题,我们开发了一种基于三维(3D)交联单宁酸(TA)/聚环氧乙烷(PEO)络合物的三合一多功能粘合剂,其中TA可以大大增强PEO在电解液中的稳定性。设计好的TA / PEO粘合剂在一种材料中集成了多种功能:(1)大大降低了穿梭效应;(2)有效地保持阴极完整性;(3)提高锂离子的传递能力,但是在许多现有的粘合剂中通常忽略这一点。 。受益于上述优点,即使使用简单的硫/碳复合材料作为阴极材料作为概念验证,在0.2 C下经过1000次循环后-1,远高于使用PVDF粘合剂的情况(仅30 mA h g -1)。相应的容量衰减约为0.03%,优于大多数报道的粘合剂。即使在5.0 mg cm -2的高硫负荷下,电池在150个循环中仍可保持74.5%的容量。此外,使用我们的TA / PEO粘合剂的阴极制备是一种水性工艺,使其特别适合大规模生产。