当前位置:
X-MOL 学术
›
Chem. Eur. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multifold Nanostructuring and Atomic‐Scale Modulation of Cobalt Phosphide to Significantly Boost Hydrogen Production
Chemistry - A European Journal ( IF 3.9 ) Pub Date : 2018-09-06 , DOI: 10.1002/chem.201802667
Jie Yu 1 , Xinhao Wu 1 , Yijun Zhong 2 , Guangming Yang 1 , Meng Ni 3 , Wei Zhou 1 , Zongping Shao 1, 2
Chemistry - A European Journal ( IF 3.9 ) Pub Date : 2018-09-06 , DOI: 10.1002/chem.201802667
Jie Yu 1 , Xinhao Wu 1 , Yijun Zhong 2 , Guangming Yang 1 , Meng Ni 3 , Wei Zhou 1 , Zongping Shao 1, 2
Affiliation
![]() |
Water electrolysis is regarded as a green and highly efficient approach to producing high‐purity hydrogen, but commercialization of this technology still requires the development of high‐performance and affordable electrocatalysts for the hydrogen evolution reaction (HER). Currently, because of its excellent electrical conductivity and good corrosion resistance in acidic media, cobalt phosphide (CoP) has become a representative non‐noble‐metal HER catalyst despite its inadequate catalytic activity. Herein, a strategy of multiple catalyst‐structure engineering, which simultaneously includes doping, nanostructuring, and in situ nanocarbon coating, was employed to significantly improve the HER performance of CoP. CoP with optimized ruthenium doping and covered by ultrathin graphitic carbon shells shows remarkably high HER catalytic behaviour with a low overpotential of only 73 mV at a current density of 10 mA cm−2 and a small Tafel slope of 46 mV dec−1, close to that of the Pt/C benchmark, while maintaining excellent durability. Moreover, the ultrathin graphene shell has a significant positive effect on catalytic activity. This work demonstrates the necessity and validity of multifold structural control, which can be widely used to design various materials for different catalytic processes.
中文翻译:
磷钴的多重纳米结构和原子尺度调节,可显着提高产氢量
水电解被认为是生产高纯度氢的绿色高效方法,但是该技术的商业化仍然需要开发用于氢析出反应(HER)的高性能且价格合理的电催化剂。目前,由于其优异的电导率和在酸性介质中的良好耐腐蚀性,磷化钴(CoP)已成为具有代表性的非贵金属HER催化剂,尽管其催化活性不足。在本文中,采用了多种催化剂结构工程的策略,其中同时包括掺杂,纳米结构和原位纳米碳涂层,以显着提高CoP的HER性能。-2和46 mV dec -1的小Tafel斜率,接近Pt / C基准的斜率,同时保持出色的耐久性。而且,超薄石墨烯壳对催化活性具有显着的积极作用。这项工作证明了多重结构控制的必要性和有效性,该结构可广泛用于设计用于不同催化过程的各种材料。
更新日期:2018-09-06
中文翻译:

磷钴的多重纳米结构和原子尺度调节,可显着提高产氢量
水电解被认为是生产高纯度氢的绿色高效方法,但是该技术的商业化仍然需要开发用于氢析出反应(HER)的高性能且价格合理的电催化剂。目前,由于其优异的电导率和在酸性介质中的良好耐腐蚀性,磷化钴(CoP)已成为具有代表性的非贵金属HER催化剂,尽管其催化活性不足。在本文中,采用了多种催化剂结构工程的策略,其中同时包括掺杂,纳米结构和原位纳米碳涂层,以显着提高CoP的HER性能。-2和46 mV dec -1的小Tafel斜率,接近Pt / C基准的斜率,同时保持出色的耐久性。而且,超薄石墨烯壳对催化活性具有显着的积极作用。这项工作证明了多重结构控制的必要性和有效性,该结构可广泛用于设计用于不同催化过程的各种材料。