Synthesis ( IF 2.2 ) Pub Date : 2018-06-25 , DOI: 10.1055/s-0037-1610143 Jianhui Huang 1, 2, 3 , Caifeng Li 1, 2, 3 , Liu Liu 1, 2, 3 , Xuegang Fu 1, 2, 3
Dedicated to Prof. Kang Zhao on the occasion of his 60th birthday
Abstract
The norbornene skeleton possesses an alkene functionality with a fixed conformation, and represents unique reactivity. The use of norbornene and analogues as substrates is overviewed; reactivities are discussed as well as the role of norbornenes as ligands assisting modern organic transformations.
1 Introduction
2 Synthesis of Substituted Norbornenes
2.1 Preparation of Functionalized Norbornenes by Deprotonation and Substitution Reactions
2.2 Preparation of Functionalized Norbornenes under Palladium-Catalyzed Reaction Conditions
2.3 Alkylation of Norbornene
2.4 Multistep Synthesis
3 Synthesis of Substituted Norbornanes
3.1 Three-Membered-Ring Formation
3.2 Formation of Four-Membered Rings
3.3 Five- and Six-Membered Ring Formation
3.4 Syntheses of Difunctionalized Norbornanes
4 Synthesis of Cyclopentanes
4.1 Oxidation Reactions
4.2 Ring-Opening Cross Metathesis (ROCM)
4.3 Ring-Opening Metathesis Polymerization (ROMP)
4.4 Palladium-Catalyzed Ring-Opening of Norbornene
5 Norbornene-Mediated Reactions
5.1 Palladium Insertion into Carbon–Halide Bonds
5.2 Palladium Insertion into N–H and C–H Bonds
5.3 Norbornene as Ligand in Mediated Reactions
6 Conclusion
The norbornene skeleton possesses an alkene functionality with a fixed conformation, and represents unique reactivity. The use of norbornene and analogues as substrates is overviewed; reactivities are discussed as well as the role of norbornenes as ligands assisting modern organic transformations.
1 Introduction
2 Synthesis of Substituted Norbornenes
2.1 Preparation of Functionalized Norbornenes by Deprotonation and Substitution Reactions
2.2 Preparation of Functionalized Norbornenes under Palladium-Catalyzed Reaction Conditions
2.3 Alkylation of Norbornene
2.4 Multistep Synthesis
3 Synthesis of Substituted Norbornanes
3.1 Three-Membered-Ring Formation
3.2 Formation of Four-Membered Rings
3.3 Five- and Six-Membered Ring Formation
3.4 Syntheses of Difunctionalized Norbornanes
4 Synthesis of Cyclopentanes
4.1 Oxidation Reactions
4.2 Ring-Opening Cross Metathesis (ROCM)
4.3 Ring-Opening Metathesis Polymerization (ROMP)
4.4 Palladium-Catalyzed Ring-Opening of Norbornene
5 Norbornene-Mediated Reactions
5.1 Palladium Insertion into Carbon–Halide Bonds
5.2 Palladium Insertion into N–H and C–H Bonds
5.3 Norbornene as Ligand in Mediated Reactions
6 Conclusion
中文翻译:
降冰片烯在有机合成中的应用
专用于康钊教授在他的60之际个生日
抽象的
降冰片烯骨架具有具有固定构象的烯烃官能度,并且代表独特的反应性。概述了降冰片烯及其类似物作为底物的使用。讨论了反应性以及降冰片烯作为协助现代有机转化的配体的作用。
1引言
2取代的降冰片烯的合成
2.1通过去质子化和取代反应制备功能化降冰片烯
2.2钯催化反应条件下功能化降冰片烯的制备
2.3降冰片烯的烷基化
2.4多步合成
3取代降冰片烷的合成
3.1三元环编队
3.2四元环的形成
3.3五元环和六元环的形成
3.4双官能降冰片烷的合成
4环戊烷的合成
4.1氧化反应
4.2开环交叉复分解(ROCM)
4.3开环易位聚合(ROMP)
4.4降冰片烯的钯催化开环
5降冰片烯介导的反应
5.1钯插入卤化碳键中
5.2钯插入N–H和C–H键
5.3降冰片烯作为介导反应中的配体
六,结论
降冰片烯骨架具有具有固定构象的烯烃官能度,并且代表独特的反应性。概述了降冰片烯及其类似物作为底物的使用。讨论了反应性以及降冰片烯作为协助现代有机转化的配体的作用。
1引言
2取代的降冰片烯的合成
2.1通过去质子化和取代反应制备功能化降冰片烯
2.2钯催化反应条件下功能化降冰片烯的制备
2.3降冰片烯的烷基化
2.4多步合成
3取代降冰片烷的合成
3.1三元环编队
3.2四元环的形成
3.3五元环和六元环的形成
3.4双官能降冰片烷的合成
4环戊烷的合成
4.1氧化反应
4.2开环交叉复分解(ROCM)
4.3开环易位聚合(ROMP)
4.4降冰片烯的钯催化开环
5降冰片烯介导的反应
5.1钯插入卤化碳键中
5.2钯插入N–H和C–H键
5.3降冰片烯作为介导反应中的配体
六,结论