当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-Temperature Thermoelectricity in LaNiO3–La2CuO4 Heterostructures
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-06-21 00:00:00 , DOI: 10.1021/acsami.8b02153
Pinar Kaya 1 , Giuliano Gregori 1 , Federico Baiutti 1 , Petar Yordanov 1 , Y. Eren Suyolcu 1 , Georg Cristiani 1 , Friederike Wrobel 1 , Eva Benckiser 1 , Bernhard Keimer 1 , Peter A. van Aken 1 , Hanns-Ulrich Habermeier 1 , Gennady Logvenov 1 , Joachim Maier 1
Affiliation  

Transition metal oxides exhibit a high potential for application in the field of electronic devices, energy storage, and energy conversion. The ability of building these types of materials by atomic layer-by-layer techniques provides a possibility to design novel systems with favored functionalities. In this study, by means of the atomic layer-by-layer oxide molecular beam epitaxy technique, we designed oxide heterostructures consisting of tetragonal K2NiF4-type insulating La2CuO4 (LCO) and perovskite-type conductive metallic LaNiO3 (LNO) layers with different thicknesses to assess the heterostructure—thermoelectric property—relationship at high temperatures. We observed that the transport properties depend on the constituent layer thickness, interface intermixing, and oxygen-exchange dynamics in the LCO layers, which occurs at high temperatures. As the thickness of the individual layers was reduced, the electrical conductivity decreased and the sign of the Seebeck coefficient changed, revealing the contribution of the individual layers where possible interfacial contributions cannot be ruled out. High-resolution scanning transmission electron microscopy investigations showed that a substitutional solid solution of La2(CuNi)O4 was formed when the thickness of the constituent layers was decreased.

中文翻译:

LaNiO 3 –La 2 CuO 4异质结构中的高温热电

过渡金属氧化物在电子设备,能量存储和能量转换领域具有很高的应用潜力。通过原子逐层技术构建这些类型的材料的能力为设计具有有利功能的新型系统提供了可能性。在这项研究中,我们通过原子逐层氧化物分子束外延技术,设计了由四方K 2 NiF 4型绝缘La 2 CuO 4(LCO)和钙钛矿型导电金属LaNiO 3组成的氧化物异质结构。(LNO)层具有不同的厚度,以评估高温下的异质结构(热电特性)之间的关系。我们观察到,传输性能取决于LCO层中的构成层厚度,界面混合以及氧交换动力学,这在高温下会发生。随着各层厚度的减小,电导率降低,塞贝克系数的符号改变,从而揭示了各层的作用,其中不能排除可能的界面作用。高分辨率扫描透射电子显微镜研究表明,当减小组成层的厚度时,形成了La 2(CuNi)O 4的替代固溶体。
更新日期:2018-06-21
down
wechat
bug