当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na3PSe4
Chemistry of Materials ( IF 7.2 ) Pub Date : 2015-12-18 00:00:00 , DOI: 10.1021/acs.chemmater.5b04013
Shou-Hang Bo 1, 2 , Yan Wang 1 , Jae Chul Kim 1, 2 , William Davidson Richards 1 , Gerbrand Ceder 1, 2, 3
Chemistry of Materials ( IF 7.2 ) Pub Date : 2015-12-18 00:00:00 , DOI: 10.1021/acs.chemmater.5b04013
Shou-Hang Bo 1, 2 , Yan Wang 1 , Jae Chul Kim 1, 2 , William Davidson Richards 1 , Gerbrand Ceder 1, 2, 3
Affiliation
![]() |
All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na+) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm–1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na3PSe4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mS cm–1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na3PSe4 only permits rapid Na+ diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.
中文翻译:
立方Na 3 PSe 4中钠离子传导的计算和实验研究
在室温或接近室温下运行的全固态Na离子电池是一种有前途的下一代电池技术,具有增强的安全性和降低的制造成本。该技术必不可少的组成部分是固态电解质,它可使阴极和阳极之间的移动阳离子(即Na +)快速穿梭。但是,几乎没有离子电导率接近液体对应电导率(即1 mS cm –1)的快速Na离子导体。在这项工作中,我们介绍了快速的Na离子导体立方Na 3 PSe 4的合成和表征。该材料的室温离子电导率超过0.1 mS cm –1而且不需要高温烧结就可以使晶界电阻最小化,这使其成为用于全固态Na离子电池应用的有前途的固态电解质候选材料。根据密度泛函理论,微动的弹性带和分子动力学研究,我们证明了立方Na 3 PSe 4的框架仅允许Na +快速扩散且存在缺陷,并且形成了Na空位(电荷在所考虑的各种缺陷中,通过少量的Se 2–氧化而平衡)在能量上更有利。该发现提供了重要的指导方针,以进一步提高此类材料中的钠离子电导率。
更新日期:2015-12-18
中文翻译:

立方Na 3 PSe 4中钠离子传导的计算和实验研究
在室温或接近室温下运行的全固态Na离子电池是一种有前途的下一代电池技术,具有增强的安全性和降低的制造成本。该技术必不可少的组成部分是固态电解质,它可使阴极和阳极之间的移动阳离子(即Na +)快速穿梭。但是,几乎没有离子电导率接近液体对应电导率(即1 mS cm –1)的快速Na离子导体。在这项工作中,我们介绍了快速的Na离子导体立方Na 3 PSe 4的合成和表征。该材料的室温离子电导率超过0.1 mS cm –1而且不需要高温烧结就可以使晶界电阻最小化,这使其成为用于全固态Na离子电池应用的有前途的固态电解质候选材料。根据密度泛函理论,微动的弹性带和分子动力学研究,我们证明了立方Na 3 PSe 4的框架仅允许Na +快速扩散且存在缺陷,并且形成了Na空位(电荷在所考虑的各种缺陷中,通过少量的Se 2–氧化而平衡)在能量上更有利。该发现提供了重要的指导方针,以进一步提高此类材料中的钠离子电导率。
