当前位置:
X-MOL 学术
›
J. Membr. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced CO 2 /CH 4 separation performance of mixed-matrix membranes through dispersion of sorption-selective MOF nanocrystals
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2018-10-01 , DOI: 10.1016/j.memsci.2018.06.007 Ke Chen , Kai Xu , Long Xiang , Xiao Dong , Yue Han , Chongqing Wang , Lin-Bing Sun , Yichang Pan
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2018-10-01 , DOI: 10.1016/j.memsci.2018.06.007 Ke Chen , Kai Xu , Long Xiang , Xiao Dong , Yue Han , Chongqing Wang , Lin-Bing Sun , Yichang Pan
Abstract Mixed matrix membranes (MMMs) derived from metal-organic frameworks (MOFs) nanocrystals represent a promising alternative for overcoming the trade-off between permeability and selectivity derived from the pristine polymeric membrane. The selection of MOFs fillers are mainly focused on their diffusion-selectivity property for gas-pairs. However, the improvement of both gas-permeability and selectivity through addition of sorption-selective MOFs are rarely reported. Herein, the incorporation of CO2-philic KAUST-7 (also referred to as NbOFFIVE-1-Ni) nanocrystals makes the neat 6FDA-Durene polyimide membrane more permeable and more selective, surpassing the state-of-the-art 2008 Robeson upper bound for CO2/CH4. Nano-sized (~ 80 nm) KAUST-7 crystals with sharp particle size distribution were first fabricated through a co-solvent synthesis method. The explored gas transportation mechanism indicates that the improvement of CO2/CH4 selectivity on MMMs are attributed to the significant raise of the sorption-selectivity rather than the diffusion-selectivity. The favorable interfacial interaction between the imide groups of the 6FDA and the H of the pyrazine in the KAUST-7 enhances plasticization resistance of the neat polymer membrane. The developed MMMs exhibit a promising application in CO2 capture from natural- and bio-gas.
中文翻译:
通过吸附选择性 MOF 纳米晶体的分散增强混合基质膜的 CO 2 /CH 4 分离性能
摘要 源自金属有机骨架 (MOF) 纳米晶体的混合基质膜 (MMM) 代表了一种有前景的替代方案,可克服源自原始聚合物膜的渗透性和选择性之间的权衡。MOFs 填料的选择主要集中在它们对气体对的扩散选择性。然而,通过添加吸附选择性 MOF 来提高透气性和选择性的报道很少。在此,CO2-philic KAUST-7(也称为 NbOFFIVE-1-Ni)纳米晶体的结合使纯 6FDA-Durene 聚酰亚胺膜更具渗透性和选择性,超过了最先进的 2008 Robeson 上限用于 CO2/CH4。具有尖锐粒度分布的纳米级 (~ 80 nm) KAUST-7 晶体首先通过共溶剂合成方法制造。探索的气体传输机制表明,MMMs 上 CO2/CH4 选择性的提高归因于吸附选择性的显着提高,而不是扩散选择性。KAUST-7 中 6FDA 的酰亚胺基团和吡嗪的 H 之间有利的界面相互作用增强了纯聚合物膜的增塑阻力。开发的 MMM 在从天然气和生物气中捕获 CO2 方面表现出有前景的应用。KAUST-7 中 6FDA 的酰亚胺基团和吡嗪的 H 之间有利的界面相互作用增强了纯聚合物膜的增塑阻力。开发的 MMM 在从天然气和生物气中捕获 CO2 方面表现出有前景的应用。KAUST-7 中 6FDA 的酰亚胺基团和吡嗪的 H 之间有利的界面相互作用增强了纯聚合物膜的增塑阻力。开发的 MMM 在从天然气和生物气中捕获 CO2 方面表现出有前景的应用。
更新日期:2018-10-01
中文翻译:
通过吸附选择性 MOF 纳米晶体的分散增强混合基质膜的 CO 2 /CH 4 分离性能
摘要 源自金属有机骨架 (MOF) 纳米晶体的混合基质膜 (MMM) 代表了一种有前景的替代方案,可克服源自原始聚合物膜的渗透性和选择性之间的权衡。MOFs 填料的选择主要集中在它们对气体对的扩散选择性。然而,通过添加吸附选择性 MOF 来提高透气性和选择性的报道很少。在此,CO2-philic KAUST-7(也称为 NbOFFIVE-1-Ni)纳米晶体的结合使纯 6FDA-Durene 聚酰亚胺膜更具渗透性和选择性,超过了最先进的 2008 Robeson 上限用于 CO2/CH4。具有尖锐粒度分布的纳米级 (~ 80 nm) KAUST-7 晶体首先通过共溶剂合成方法制造。探索的气体传输机制表明,MMMs 上 CO2/CH4 选择性的提高归因于吸附选择性的显着提高,而不是扩散选择性。KAUST-7 中 6FDA 的酰亚胺基团和吡嗪的 H 之间有利的界面相互作用增强了纯聚合物膜的增塑阻力。开发的 MMM 在从天然气和生物气中捕获 CO2 方面表现出有前景的应用。KAUST-7 中 6FDA 的酰亚胺基团和吡嗪的 H 之间有利的界面相互作用增强了纯聚合物膜的增塑阻力。开发的 MMM 在从天然气和生物气中捕获 CO2 方面表现出有前景的应用。KAUST-7 中 6FDA 的酰亚胺基团和吡嗪的 H 之间有利的界面相互作用增强了纯聚合物膜的增塑阻力。开发的 MMM 在从天然气和生物气中捕获 CO2 方面表现出有前景的应用。