当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pressure‐Dependent Strong Photoluminescence of Excitons Bound to Defects in WS2 Quantum Dots
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2018-06-05 , DOI: 10.1002/admi.201800305
Pengfei Shen 1 , Shifeng Niu 1 , Lingrui Wang 1 , Yanhui Liu 2 , Quanjun Li 1 , Tian Cui 1 , Bingbing Liu 1
Affiliation  

There are various efforts to tailor the excitonic properties in monolayer transition metal dichalcogenides (TMDs) for exploring their potential applications in optoelectronic devices. However, the low quantum yields (QYs), despite their direct bandgap nature, have limited the application in much fields. Encouragingly, excitons combined with defects endow WS2 quantum dots (QDs) with certain desirable properties through strain engineering. A strong exciton photoluminescence (PL) of WS2 QDs even up to ≈20 GPa by PL measurements is reported. Their PL reveals that a distinct defect‐induced peak D is located below the neutral exciton peak A. This peak D originates from defect‐bound excitons and intensifies with increasing pressure as more electrons transfer from WS2 QDs to O2. In addition, a transition from direct to indirect bandgap above 4.5 GPa is revealed by both experimental measurements and theoretical calculations. The evolution of electronic structure is related to lattice structural distortion. The results provide a new direction for modulating the optical properties of TMDs QDs through utilizing defects–excitons interactions. The pressure‐tuned emission of excitons combined with strong PL from defects sites of WS2 QDs may have promising applications in optoelectronic devices.

中文翻译:

WS2量子点中受缺陷束缚的激子的压力依赖性强光致发光

为了探索单层过渡金属二卤化二硫(TMD)中的激子性质,人们进行了各种努力,以探索其在光电器件中的潜在应用。然而,尽管低量子产率(QYs)具有直接的带隙性质,但仍限制了其在许多领域中的应用。令人鼓舞的是,激子与缺陷相结合,通过应变工程使WS 2量子点(QD)具有某些理想的特性。据报道,通过PL测量,WS 2 QD的强激子光致发光(PL)甚至高达≈20 GPa。他们的PL揭示了一个明显的由缺陷引起的峰D位于中性激子峰A之下。该峰D源自缺陷结合的激子,并随着越来越多的电子从WS 2转移而随着压力的增加而增强。QD到O 2。此外,实验测量和理论计算都揭示了从4.5 GPa以上的直接带隙过渡到间接带隙的过程。电子结构的演变与晶格结构畸变有关。研究结果为利用缺陷-激子相互作用调节TMD QDs的光学性质提供了新的方向。来自WS 2 QD缺陷部位的激子压力调整发射与强PL结合可能在光电子器件中具有广阔的应用前景。
更新日期:2018-06-05
down
wechat
bug