当前位置:
X-MOL 学术
›
React. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Coupling CFD–DEM and microkinetic modeling of surface chemistry for the simulation of catalytic fluidized systems†
Reaction Chemistry & Engineering ( IF 3.4 ) Pub Date : 2018-06-01 00:00:00 , DOI: 10.1039/c8re00050f Riccardo Uglietti 1 , Mauro Bracconi 1 , Matteo Maestri 1
Reaction Chemistry & Engineering ( IF 3.4 ) Pub Date : 2018-06-01 00:00:00 , DOI: 10.1039/c8re00050f Riccardo Uglietti 1 , Mauro Bracconi 1 , Matteo Maestri 1
Affiliation
In this work, we propose numerical methodologies to combine detailed microkinetic modeling and Eulerian–Lagrangian methods for the multiscale simulation of fluidized bed reactors. In particular, we couple the hydrodynamics description by computational fluid dynamics and the discrete element method (CFD–DEM) with the detailed surface chemistry by means of microkinetic modeling. The governing equations for the gas phase are solved through a segregated approach. The mass and energy balances for each catalytic particle, instead, are integrated adopting both the coupled and the operator-splitting approaches. To reduce the computational burden associated with the microkinetic description of the surface chemistry, in situ adaptive tabulation (ISAT) is employed together with operator-splitting. The catalytic partial oxidation of methane and steam reforming on Rh are presented as a showcase to assess the capability of the methods. An accurate description of the gas and site species is achieved along with up to 4 times speed-up of the simulation, thanks to the combined effect of operator-splitting and ISAT. The proposed approach represents an important step for the first-principles based multiscale analysis of fluidized reactive systems.
中文翻译:
耦合 CFD-DEM 和表面化学微动力学建模,用于模拟催化流化系统†
在这项工作中,我们提出了将详细的微动力学建模和欧拉-拉格朗日方法相结合的数值方法,用于流化床反应器的多尺度模拟。特别是,我们将计算流体动力学和离散元法(CFD-DEM)的流体动力学描述与微动力学建模的详细表面化学结合起来。气相的控制方程通过分离方法求解。相反,每个催化颗粒的质量和能量平衡是通过耦合和算子分裂方法进行积分的。为了减少与表面化学的微动力学描述相关的计算负担,将原位自适应制表(ISAT)与算子分割一起使用。甲烷的催化部分氧化和铑的蒸汽重整作为评估这些方法能力的展示。由于算子分裂和 ISAT 的综合作用,可以实现对气体和现场物种的准确描述,并且模拟速度提高了 4 倍。所提出的方法代表了基于第一原理的流化反应系统多尺度分析的重要一步。
更新日期:2018-06-01
中文翻译:
耦合 CFD-DEM 和表面化学微动力学建模,用于模拟催化流化系统†
在这项工作中,我们提出了将详细的微动力学建模和欧拉-拉格朗日方法相结合的数值方法,用于流化床反应器的多尺度模拟。特别是,我们将计算流体动力学和离散元法(CFD-DEM)的流体动力学描述与微动力学建模的详细表面化学结合起来。气相的控制方程通过分离方法求解。相反,每个催化颗粒的质量和能量平衡是通过耦合和算子分裂方法进行积分的。为了减少与表面化学的微动力学描述相关的计算负担,将原位自适应制表(ISAT)与算子分割一起使用。甲烷的催化部分氧化和铑的蒸汽重整作为评估这些方法能力的展示。由于算子分裂和 ISAT 的综合作用,可以实现对气体和现场物种的准确描述,并且模拟速度提高了 4 倍。所提出的方法代表了基于第一原理的流化反应系统多尺度分析的重要一步。