当前位置:
X-MOL 学术
›
ChemSusChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spinel MnCo2O4 Nanoparticles Supported on Three‐Dimensional Graphene with Enhanced Mass Transfer as an Efficient Electrocatalyst for the Oxygen Reduction Reaction
ChemSusChem ( IF 7.5 ) Pub Date : 2018-07-17 , DOI: 10.1002/cssc.201801070 Tingwei Zhang 1 , Zhongfang Li 1 , Likai Wang 1 , Peng Sun 1 , Zhixu Zhang 1 , Suwen Wang 1
ChemSusChem ( IF 7.5 ) Pub Date : 2018-07-17 , DOI: 10.1002/cssc.201801070 Tingwei Zhang 1 , Zhongfang Li 1 , Likai Wang 1 , Peng Sun 1 , Zhixu Zhang 1 , Suwen Wang 1
Affiliation
The rational design of highly efficient and durable oxygen reduction reaction (ORR) catalysts is critical for the commercial application of fuel cells. Herein, three‐dimensional graphene (3D‐G) is synthesized by the template method, which used coal tar pitch as the carbon source and nano MgO as the template. Then, spinel MnCo2O4 is in situ supported on the 3D‐G by a facile hydrothermal method, giving MnCo2O4/3D‐G. The resultant MnCo2O4/3D‐G retains the multilayered mesoporous graphene structure where MnCo2O4 nanoparticles are deposited on the inner walls of pores in the 3D‐G. The catalyst MnCo2O4/3D‐G shows high electrocatalytic activity with a half‐wave potential of 0.81 V versus reversible hydrogen electrode, which is clearly superior to those of MnCo2O4/reduced graphene oxide (0.78 V), MnCo2O4/carbon nanotubes (0.74 V), MnCo2O4/C (0.72 V), and 20 wt % Pt/C (0.80 V). The electron transfer number of MnCo2O4/3D‐G indicates a four‐electron process of ORR. The durability test demonstrates that the MnCo2O4/3D‐G catalyst has a much better durability than 20 wt % Pt/C. Our work makes an inspiring strategy to prepare high‐performance electrocatalysts for the development of fuel cells.
中文翻译:
三维石墨烯上负载有增强传质的尖晶石MnCo2O4纳米颗粒作为一种高效的氧还原反应电催化剂
高效耐用的氧还原反应(ORR)催化剂的合理设计对于燃料电池的商业应用至关重要。本文以模板法合成了以石墨焦油为碳源,纳米MgO为模板的三维石墨烯(3D-G)。然后,通过简便的水热法将尖晶石MnCo 2 O 4原位支撑在3D-G上,得到MnCo 2 O 4 / 3D-G。所得的MnCo 2 O 4 / 3D-G保留了多层介孔石墨烯结构,其中MnCo 2 O 4纳米颗粒沉积在3D-G孔的内壁上。催化剂MnCo 2 O4 / 3D‐G与可逆氢电极相比具有高的电催化活性,半波电势为0.81 V,明显优于MnCo 2 O 4 /还原氧化石墨烯(0.78 V),MnCo 2 O 4 /碳纳米管(0.74 V),MnCo 2 O 4 / C(0.72 V)和20 wt%Pt / C(0.80 V)。MnCo 2 O 4 / 3D‐G的电子转移数表示ORR的四电子过程。耐久性测试表明,MnCo 2 O 4/ 3D‐G催化剂的耐久性比20 wt%Pt / C好得多。我们的工作提出了一个鼓舞人心的战略,以制备用于燃料电池开发的高性能电催化剂。
更新日期:2018-07-17
中文翻译:
三维石墨烯上负载有增强传质的尖晶石MnCo2O4纳米颗粒作为一种高效的氧还原反应电催化剂
高效耐用的氧还原反应(ORR)催化剂的合理设计对于燃料电池的商业应用至关重要。本文以模板法合成了以石墨焦油为碳源,纳米MgO为模板的三维石墨烯(3D-G)。然后,通过简便的水热法将尖晶石MnCo 2 O 4原位支撑在3D-G上,得到MnCo 2 O 4 / 3D-G。所得的MnCo 2 O 4 / 3D-G保留了多层介孔石墨烯结构,其中MnCo 2 O 4纳米颗粒沉积在3D-G孔的内壁上。催化剂MnCo 2 O4 / 3D‐G与可逆氢电极相比具有高的电催化活性,半波电势为0.81 V,明显优于MnCo 2 O 4 /还原氧化石墨烯(0.78 V),MnCo 2 O 4 /碳纳米管(0.74 V),MnCo 2 O 4 / C(0.72 V)和20 wt%Pt / C(0.80 V)。MnCo 2 O 4 / 3D‐G的电子转移数表示ORR的四电子过程。耐久性测试表明,MnCo 2 O 4/ 3D‐G催化剂的耐久性比20 wt%Pt / C好得多。我们的工作提出了一个鼓舞人心的战略,以制备用于燃料电池开发的高性能电催化剂。