当前位置: X-MOL 学术J. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes
The Journal of Chemical Physics ( IF 3.1 ) Pub Date : 2015-12-14 14:37:30 , DOI: 10.1063/1.4937171
Zunmin Zhang 1 , Ewan Henry 1 , Gerhard Gompper 1 , Dmitry A. Fedosov 1
Affiliation  

Deterministic lateral displacement (DLD) devices have great potential for the separation and sorting of various suspended particles based on their size, shape, deformability, and other intrinsic properties. Currently, the basic idea for the separation mechanism is that the structure and geometry of DLDs uniquely determine the flow field, which in turn defines a critical particle size and the particle lateral displacement within a device. We employ numerical simulations using coarse-grained mesoscopic methods and two-dimensional models to elucidate the dynamics of both rigid spherical particles and deformable red blood cells (RBCs) in different DLD geometries. Several shapes of pillars, including circular, diamond, square, and triangular structures, and a few particle sizes are considered. The simulation results show that a critical particle size can be well defined for rigid spherical particles and depends on the details of the DLD structure and the corresponding flow field within the device. However, non-isotropic and deformable particles such as RBCs exhibit much more complex dynamics within a DLD device, which cannot properly be described by a single parameter such as the critical size. The dynamics and deformation of soft particles within a DLD device become also important, indicating that not only size sorting, but additional sorting targets (e.g., shape, deformability, internal viscosity) are possible.

中文翻译:

刚性和可变形颗粒在不同立柱形状的确定性横向位移装置中的行为

确定性横向位移(DLD)设备具有基于其大小,形状,可变形性和其他固有特性对各种悬浮颗粒进行分离和分类的巨大潜力。当前,分离机制的基本思想是DLD的结构和几何形状唯一地决定了流场,而流场又决定了临界粒径和装置内的颗粒横向位移。我们使用粗粒度介观方法和二维模型进行数值模拟,以阐明在不同DLD几何形状中刚性球形颗粒和可变形红细胞(RBC)的动力学。考虑了几种形状的柱子,包括圆形,菱形,正方形和三角形结构,以及一些粒径。仿真结果表明,可以很好地定义刚性球形颗粒的临界粒度,并且取决于DLD结构的细节以及设备内相应的流场。但是,非各向同性和可变形的粒子(如RBC)在DLD装置中表现出更为复杂的动力学,无法通过单个参数(例如临界尺寸)正确描述。DLD设备中软颗粒的动力学和变形也变得很重要,这表明不仅尺寸分选,而且其他分选目标(例如形状,可变形性,内部粘度)都是可能的。非各向同性和可变形的粒子(例如RBC)在DLD装置中表现出更为复杂的动力学,无法通过单个参数(例如临界尺寸)正确描述。DLD设备中软颗粒的动力学和变形也变得很重要,这表明不仅尺寸分选,而且其他分选目标(例如形状,可变形性,内部粘度)都是可能的。非各向同性和可变形的粒子(例如RBC)在DLD装置中表现出更为复杂的动力学,无法通过单个参数(例如临界尺寸)正确描述。DLD设备中软颗粒的动力学和变形也变得很重要,这表明不仅尺寸分选,而且其他分选目标(例如形状,可变形性,内部粘度)都是可能的。
更新日期:2015-12-15
down
wechat
bug