当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Multifunctional Composites Based on Large‐Area Stretchable Circuit with Thermoforming Technology
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2018-05-21 , DOI: 10.1002/aelm.201800071
Yang Yang 1, 2 , Thomas Vervust 1 , Sheila Dunphy 1 , Steven Van Put 1 , Bjorn Vandecasteele 1 , Kristof Dhaenens 1 , Lieven Degrendele 1 , Lothar Mader 1 , Linde De Vriese 3 , Tom Martens 3 , Markus Kaufmann 3 , Tsuyoshi Sekitani 2 , Jan Vanfleteren 1
Affiliation  

Fiber‐reinforced polymer composites with integrated intelligence, such as sensors, actuators, and communication capabilities, are desirable as infrastructures for the next generation of “internet of things.” However, the shape mismatch between the 3D composites and a planar electronic circuit causes difficulties in integrating electronic circuit‐based intelligences. Here, an easily scalable approach, by incorporating a large‐area stretchable circuit with thermoforming technology, to fabricate 3D multifunctional composites is reported. The stretchable circuit is first fabricated on a rigid and planar carrier board, then transferred and sandwiched between thermoplastic composites through lamination processes. A thermoforming step shapes the sandwiched and planar structure by heating up the encapsulating polymers beyond their glass transition temperature and pushing them and the circuit against a mold. Using the proposed process, large‐sized composites with integrated matrices of light‐emitting diodes (LEDs) and capacitive sensors are successfully fabricated. A giant (with a size of 0.5 m × 1 m) seven‐segment display is assembled using the fabricated composites with integrated LEDs and capacitive sensors to display 128 symbols. The results demonstrate the potential of the proposed approach as a facile, reproducible, and scalable process for creating 3D multifunctional composites.

中文翻译:

基于大面积可拉伸电路的热成型技术的3D多功能复合材料

具有集成智能功能的纤维增强聚合物复合材料,例如传感器,执行器和通信功能,是下一代“物联网”的基础设施。但是,3D复合材料和平面电子电路之间的形状不匹配会导致集成基于电子电路的智能功能时遇到困难。此处报道了一种易于扩展的方法,该方法通过将大面积可拉伸电路与热成型技术相结合来制造3D多功能复合材料。可拉伸电路首先在刚性且平坦的载体板上制造,然后通过层压过程转移并夹在热塑性复合材料之间。热成型步骤通过将包封的聚合物加热到超过其玻璃化转变温度,然后将它们和电路推向模具,从而对夹层平面结构进行成形。使用提出的工艺,成功地制造了具有集成矩阵的发光二极管(LED)和电容式传感器的大型复合材料。使用集成了LED和电容传感器的复合材料组装了一块巨大的(大小为0.5 m×1 m的)七段显示器,以显示128个符号。结果证明了所提出的方法作为创建3D多功能复合材料的便捷,可复制和可扩展过程的潜力。成功地制造了具有集成的发光二极管(LED)矩阵和电容式传感器矩阵的大型复合材料。使用集成了LED和电容传感器的复合材料组装了一块巨大的(大小为0.5 m×1 m的)七段显示器,以显示128个符号。结果证明了该方法作为创建3D多功能复合材料的便捷,可复制和可扩展过程的潜力。成功地制造了具有集成的发光二极管(LED)矩阵和电容式传感器矩阵的大型复合材料。使用集成了LED和电容传感器的复合材料组装了一块巨大的(大小为0.5 m×1 m的)七段显示器,以显示128个符号。结果证明了所提出的方法作为创建3D多功能复合材料的便捷,可复制和可扩展过程的潜力。
更新日期:2018-05-21
down
wechat
bug