Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Characterization of the Ionic Liquid/Electrode Interfacial Relaxation Processes Under Potential Polarization for Ionic Liquid Amperometric Gas Sensor Method Development.
ACS Sensors ( IF 8.2 ) Pub Date : 2018-06-04 , DOI: 10.1021/acssensors.8b00155 Lu Lin , Peng Zhao , Andrew J Mason 1 , Xiangqun Zeng
ACS Sensors ( IF 8.2 ) Pub Date : 2018-06-04 , DOI: 10.1021/acssensors.8b00155 Lu Lin , Peng Zhao , Andrew J Mason 1 , Xiangqun Zeng
Affiliation
Electrochemical amperometric sensors require a constant or varying potential at the working electrode that drives redox reactions of the analyte for detection. The interfacial redox reaction(s) can result in the formation of new chemical products that could change the initial condition of the electrode/electrolyte interface. If the products are not inert and/or cannot be removed from the system such that the initial condition of the electrode/electrolyte interface cannot be restored, the sensor signal baseline would consequently drift, which is problematic for the continuous and real-time sensors. By setting the electrode potential with the periodical ON-OFF mode, electrolysis can be forestalled during the off mode which can minimize the sensor signal baseline drift and reduce the power consumption of the sensor. However, it is known that the relaxation of the structure in the electrical double layer at the ionic liquid/electrode interface to the steps of the electrode potential is slow. This work characterized the electrode/electrolyte interfacial relaxation process of an ionic liquid based electrochemical gas (IL-EG) sensor by performing multiple potential step experiments in which the potential is stepped from an open circuit potential (OCP) to the amperometric sensing potential at various frequencies with different time periods. Our results showed that by shortening the sensing period as well as extending the idle period (i.e., enlarge the ratio of idle period versus sensing period) of the potential step experiments, the electrode/electrolyte interface is prone to relax to its original state, and thus reduces the baseline drift. Additionally, the high viscosity of the ionic liquids is beneficial for electrochemical regeneration via the implementation of a conditioning step at zero volts at the electrode/electrolyte. By setting the working electrode at zero volts instead of OCP, our results showed that it could further minimize the baseline drift, enhance the sensing signal stability, and extend the functioning lifetime of a continuous IL-EG oxygen sensor.
中文翻译:
电位极化下离子液体/电极界面弛豫过程的表征,用于离子液体安培气体传感器方法的开发。
电化学电流传感器需要工作电极具有恒定或变化的电势,以驱动分析物的氧化还原反应进行检测。界面氧化还原反应会导致新化学产物的形成,从而改变电极/电解质界面的初始条件。如果产品不是惰性的和/或无法从系统中移除,使得电极/电解质界面的初始条件无法恢复,则传感器信号基线将因此漂移,这对于连续和实时传感器来说是有问题的。通过周期性开关模式设置电极电位,可以在关闭模式期间阻止电解,从而最大限度地减少传感器信号基线漂移并降低传感器的功耗。然而,已知离子液体/电极界面处的双电层结构对电极电势阶跃的弛豫是缓慢的。这项工作通过执行多个电位阶跃实验来表征基于离子液体的电化学气体 (IL-EG) 传感器的电极/电解质界面弛豫过程,其中电位从开路电位 (OCP) 阶跃到不同条件下的电流传感电位。不同时间段的频率。我们的结果表明,通过缩短电位阶跃实验的传感周期和延长空闲周期(即增大空闲周期与传感周期的比率),电极/电解质界面容易松弛到原始状态,并且从而减少基线漂移。 此外,离子液体的高粘度有利于通过在电极/电解质处执行零伏调节步骤来进行电化学再生。通过将工作电极设置为零伏而不是 OCP,我们的结果表明,它可以进一步最小化基线漂移,增强传感信号稳定性,并延长连续 IL-EG 氧传感器的功能寿命。
更新日期:2018-05-21
中文翻译:
电位极化下离子液体/电极界面弛豫过程的表征,用于离子液体安培气体传感器方法的开发。
电化学电流传感器需要工作电极具有恒定或变化的电势,以驱动分析物的氧化还原反应进行检测。界面氧化还原反应会导致新化学产物的形成,从而改变电极/电解质界面的初始条件。如果产品不是惰性的和/或无法从系统中移除,使得电极/电解质界面的初始条件无法恢复,则传感器信号基线将因此漂移,这对于连续和实时传感器来说是有问题的。通过周期性开关模式设置电极电位,可以在关闭模式期间阻止电解,从而最大限度地减少传感器信号基线漂移并降低传感器的功耗。然而,已知离子液体/电极界面处的双电层结构对电极电势阶跃的弛豫是缓慢的。这项工作通过执行多个电位阶跃实验来表征基于离子液体的电化学气体 (IL-EG) 传感器的电极/电解质界面弛豫过程,其中电位从开路电位 (OCP) 阶跃到不同条件下的电流传感电位。不同时间段的频率。我们的结果表明,通过缩短电位阶跃实验的传感周期和延长空闲周期(即增大空闲周期与传感周期的比率),电极/电解质界面容易松弛到原始状态,并且从而减少基线漂移。 此外,离子液体的高粘度有利于通过在电极/电解质处执行零伏调节步骤来进行电化学再生。通过将工作电极设置为零伏而不是 OCP,我们的结果表明,它可以进一步最小化基线漂移,增强传感信号稳定性,并延长连续 IL-EG 氧传感器的功能寿命。